It is quite obvious as you have hardcoded the top boundary condition, which assumes that your mesh is a unit square, while what you actually have in your mesh is a [0,30]\times[0,30] mesh.
Thus using
top = CompiledSubDomain('on_boundary && near(x[1], 30, tol)', tol=1E-5)
Here is a cleaned up version of your code:
import matplotlib.pyplot as plt
from dolfin import *
import meshio
mesh_from_file = meshio.read("mesh.msh")
def create_mesh(mesh, cell_type, prune_z=False):
cells = mesh.get_cells_type(cell_type)
cell_data = mesh.get_cell_data("gmsh:physical", cell_type)
points = mesh.points[:, :2] if prune_z else mesh.points
out_mesh = meshio.Mesh(points=points, cells={cell_type: cells}, cell_data={
"name_to_read": [cell_data]})
return out_mesh
line_mesh = create_mesh(mesh_from_file, "line", prune_z=True)
meshio.write("bound.xdmf", line_mesh)
triangle_mesh = create_mesh(mesh_from_file, "triangle", prune_z=True)
meshio.write("lavender.xdmf", triangle_mesh)
mesh = Mesh()
with XDMFFile("lavender.xdmf") as infile:
infile.read(mesh)
mvc = MeshValueCollection("size_t", mesh, 2)
with XDMFFile("bound.xdmf") as infile:
infile.read(mvc, "name_to_read")
sub = cpp.mesh.MeshFunctionSizet(mesh, mvc)
# Strain function
def epsilon(u):
return 0.5*(grad(u) + grad(u).T)
# return sym(grad(u))
# Stress function
def sigma(u):
return lmbda_*div(u)*Identity(2) + 2*mu*epsilon(u)
# Define material properties
E = Constant(100000)
nu = Constant(0.3)
mu = E/(2*(1+nu))
lmbda_ = E*nu/((1+nu)*(1-2*nu))
flag_quad = 2
P2 = VectorElement("Lagrange", mesh.ufl_cell(), flag_quad)
TH = P2
W = FunctionSpace(mesh, TH)
# Define traction on the boundary and body forces
T = Constant((0.0, 0.0))
B = Constant((0.0, 0.0))
u = Function(W)
du = TrialFunction(W)
v = TestFunction(W)
# Boundary Conditions
def clamped_boundary(x, on_boundary):
return on_boundary and x[1] < tol
bc1 = DirichletBC(W, Constant((0, 0)), clamped_boundary)
tol = 1E-5
top = CompiledSubDomain('on_boundary && near(x[1], 30, tol)', tol=1E-5)
applied_disp = 0.5
bc2 = DirichletBC(W.sub(1), Constant((applied_disp/2.0)), top)
bcs = [bc1, bc2]
a = inner(sigma(du), epsilon(v))*dx
l = dot(B, v)*dx + inner(T, v)*ds(1)
A_ass, L_ass = assemble_system(a, l, bcs)
solve(A_ass, u.vector(), L_ass)
plot(u, title="Displacement", mode="displacement")
plt.savefig("u.png")
file_results = XDMFFile("+-elasticity_reet.xdmf")
file_results.write(u, 0.)
file_results.close()
Note that I’ve made sure that the indentation of all functions are correct, which wasn’t the case in your code
Also note that you could use the marked boundaries from the gmsh mesh (“bound.xdmf”) to set boundary conditions.