Hi,
I am new to fenics and I was trying to put advection to Cahn-Hilliard equation as I wanted to couple it to hydrodynamics. For the time being, I am using constant velocity just to see if the code works. But it gives me error. Here is the code.
import random
from dolfin import *
Class representing the intial conditions
class InitialConditions(UserExpression):
def init(self, **kwargs):
random.seed(2 + MPI.rank(MPI.comm_world))
super().init(*kwargs)
def eval(self, values, x):
values[0] = 0.63 + 0.02(0.5 - random.random())
values[1] = 0.0
def value_shape(self):
return (2,)
Class for interfacing with the Newton solver
class CahnHilliardEquation(NonlinearProblem):
def init(self, a, L):
NonlinearProblem.init(self)
self.L = L
self.a = a
def F(self, b, x):
assemble(self.L, tensor=b)
def J(self, A, x):
assemble(self.a, tensor=A)
Sub domain for Periodic boundary condition (periodic in x)
class PeriodicBoundary(SubDomain):
# Left boundary is "target domain" G
def inside(self, x, on_boundary):
return bool(x[0] < DOLFIN_EPS and x[0] > -DOLFIN_EPS and on_boundary)
# Map right boundary (H) to left boundary (G)
def map(self, x, y):
y[0] = x[0] - 1.0
y[1] = x[1]
Create periodic boundary condition
pbc = PeriodicBoundary()
Model parameters
lmbda = 1.0e-02 # surface parameter
dt = 5.0e-06 # time step
theta = 0.5 # time stepping family, e.g. theta=1 → backward Euler, theta=0.5 → Crank-Nicolson
Form compiler options
parameters[“form_compiler”][“optimize”] = True
parameters[“form_compiler”][“cpp_optimize”] = True
Create mesh and build function space
mesh = UnitSquareMesh.create(100, 100, CellType.Type.quadrilateral)
P1 = FiniteElement(“Lagrange”, mesh.ufl_cell(), 1)
ME = FunctionSpace(mesh, P1*P1,constrained_domain=pbc)
Define trial and test functions
du = TrialFunction(ME)
q, v = TestFunctions(ME)
Define functions
u = Function(ME) # current solution
u0 = Function(ME) # solution from previous converged step
Split mixed functions
dc, dmu = split(du)
c, mu = split(u)
c0, mu0 = split(u0)
Create intial conditions and interpolate
u_init = InitialConditions(degree=1)
#u_init=Expression((‘tanh(1000*(x[1]-0.5)+1.0)0.01’,‘0’), degree=2)
#u_init=Expression(('tanh(1000(x[1]-0.5)+1.0)’,‘0’), degree=2)
u.interpolate(u_init)
u0.interpolate(u_init)
Compute the chemical potential df/dc
c = variable(c)
f = 100c**2(1-c)**2
dfdc = diff(f, c)
mu_(n+theta)
mu_mid = (1.0-theta)mu0 + thetamu
#add advection (advection is causing problems)
vel=Constant((0.0,0.1))
vel_=interpolate(vel,ME)
Weak statement of the equations
L0 = cqdx - c0qdx + dtdot(grad(mu_mid), grad(q))dx + dtdot(grad(c),vel_)dx
L1 = muvdx - dfdcvdx - lmbda*dot(grad(c), grad(v))*dx
L = L0 + L1
Compute directional derivative about u in the direction of du (Jacobian)
a = derivative(L, u, du)
Create nonlinear problem and Newton solver
problem = CahnHilliardEquation(a, L)
solver = NewtonSolver()
solver.parameters[“linear_solver”] = “lu”
solver.parameters[“convergence_criterion”] = “incremental”
solver.parameters[“relative_tolerance”] = 1e-6
Output file
file = File(“output.pvd”, “compressed”)
Step in time
t = 0.0
T = 50*dt
while (t < T):
t += dt
u0.vector()[:] = u.vector()
solver.solve(problem, u.vector())
file << (u.split()[0], t)