Sorry for my previous inaccurate posts,

Basically I have a 3D box and I want to apply boundary conditions on the specific points that I mention inside the bc1, bc2, bc3, bc4,…bc9

The points are:

(x, y, z)

2, 0, 2

1.5, 0, 2

0.5, 0, 2

0, 0, 2

-0.5, 0, 2

-1, 0, 2

-1.5, 0, 2

-2, 0, 2

import matplotlib.pyplot as plt

from dolfin import *

import numpy as np

mesh = Mesh(“dolfinmesh.xml”)

mesh_file_volume = MeshFunction(‘size_t’, mesh ,“dolfinmesh_volume_meshvalue.xml”)

mesh_file_boundary = MeshFunction(‘size_t’ , mesh , “dolfinmesh_bcfunc.xml”)

V = FunctionSpace(mesh, “Lagrange”, 1)

‘’’’

bc1 = DirichletBC(V, Constant(2.46),“near(x[0] , 2.0) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bc2 = DirichletBC(V, Constant(2.43),“near(x[0] , 1.5) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bc3 = DirichletBC(V, Constant(2.3),“near(x[0], 1.0) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bc4 = DirichletBC(V, Constant(2.6),“near(x[0], 0.5) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bc5 = DirichletBC(V, Constant(4.3),“near(x[0], 0.0) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bc6 = DirichletBC(V, Constant(2.44),“near(x[0], -0.5) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bc7 = DirichletBC(V, Constant(2.43),“near(x[0], -1.0) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bc8 = DirichletBC(V, Constant(2.55),“near(x[0], -1.5) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bc9 = DirichletBC(V, Constant(2.69),“near(x[0], -2.0) && x[1] == 0.0 && x[2] == 2.0”,“pointwise”)

bcs = [bc1, bc2, bc3, bc4, bc5, bc6, bc7, bc8, bc9]

‘’’’’

# Define variational problem

u = TrialFunction(V)

v = TestFunction(V)

a = inner(C*grad(u), grad(v))**dx*

f = Constant(0.0)

L = fvdx

A, b = assemble_system(a, L, bcs)

u_k = Function(V)

solve(A, u_k.vector(), b, ‘lu’)

File(‘saved_u.xml’) << u_k

file = File(“final2.pvd”)

file << u_k

All the above seem not to work.