Hi. Assume I am solving a multidimensional heat equation in FeniCS where
\frac{\partial \Upsilon}{\partial t}(t,x,y,z) = \nabla^2\Upsilon(t,x,y,z)
with
x\in[x_0,x_1], \\ y\in[y_0,y_1], \\ z\in[z_0,z_1]
on a unit cube. If I don’t prescribe any Dirichlet boundary conditions and simply provide an initial condition \Upsilon(t=0,x,y,z) = \Upsilon_{0}, will FeniCS prescribe (natural) Neumann boundary conditions of the form
\partial_{x}\Upsilon(t,x_{0},y,z) = \partial_x\Upsilon(t,x_1,y,z) = 0,\\ \partial_{y}\Upsilon(t,x,y_0,z) = \partial_y\Upsilon(t,x,y_1,z) = 0,\\ \partial_{z}\Upsilon(t,x,y,z_0) = \partial_z\Upsilon(t,x,y,z_0) = 0
?