from dolfin import *
# Define the domain dimensions
radius = 1.0 # Radius of the spinneret
length = 10.0 # Length of the fiber
resolution = 100 # Mesh resolution
# Create the mesh
mesh = BoxMesh(Point(-radius, -radius, 0), Point(radius, radius, length), resolution, resolution, resolution)
# Define the function space for velocity and pressure
P1 = FiniteElement('P', tetrahedron, 1)
element = MixedElement([P1, P1, P1, P1]) # Mixed element for (u1, u2, u3, p)
V = FunctionSpace(mesh, element)
# Define the function space for velocity and pressure
P1 = FiniteElement('P', tetrahedron, 1)
element = MixedElement([P1, P1, P1, P1]) # Mixed element for (u1, u2, u3, p)
V = FunctionSpace(mesh, element)
# Define the trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
# Split the trial and test functions
u1, u2, u3, p = split(u)
v1, v2, v3, q = split(v)
# Define the parameters
mu = Constant(1.0) # Dynamic viscosity
rho = Constant(1.0) # Density
u_inflow = Constant((1.0, 0.0, 0.0)) # Inflow velocity at the spinneret
u_takeup = Constant((10.0, 0.0, 0.0)) # Velocity at the take-up roller
# Define the boundary conditions
inflow = DirichletBC(V, u_inflow, "near(x[0], 0)")
takeup = DirichletBC(V, u_takeup, "near(x[0], {})".format(length))
boundary_conditions = [inflow, takeup]
# Define the initial conditions
u0 = interpolate(u_inflow, V) # Initial velocity
p0 = Constant(0.0) # Initial pressure
# Assign initial conditions
u_old = Function(V, name="VelocityPressure")
u_old.assign(u0)
# Time-stepping parameters
T = 1.0 # Total simulation time
num_steps = 100 # Number of time steps
dt = T / num_steps # Time step size
# Define the variational forms
F = rho * dot((u - u_old) / dt, v) * dx + rho * inner(dot(u, nabla_grad(u)), v) * dx - \
mu * inner(sym(nabla_grad(u)), nabla_grad(v)) * dx + dot(nabla_grad(p), v) * dx + \
div(u) * q * dx - div(v) * p * dx
# Define list to store solutions
solutions = []
# Time-stepping loop
for n in range(num_steps):
# Update boundary conditions if necessary (e.g., time-dependent inflow)
# Solve the variational problem
u_p = Function(V, name="VelocityPressure")
solve(lhs(F) == rhs(F), u_p, boundary_conditions)
# Update the solution
u_old.assign(u_p)
# Split the solution
u1, u2, u3, p = u_p.split()
# Store the solution at the current time step
solutions.append((u_p, p))
# Access the final solution
u_final, p_final = solutions[-1]
Add error message here
When I run it, it occurs a mistake:
Traceback (most recent call last):
File "/Users/gdd/Desktop/fenics_biginner/chatgpt_example1.py", line 37, in <module>
inflow = DirichletBC(V, u_inflow, "near(x[0], 0)")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/Users/gdd/anaconda3/envs/fenics/lib/python3.11/site-packages/dolfin/fem/dirichletbc.py", line 131, in __init__
super().__init__(*args)
RuntimeError:
*** -------------------------------------------------------------------------
*** DOLFIN encountered an error. If you are not able to resolve this issue
*** using the information listed below, you can ask for help at
***
*** fenics-support@googlegroups.com
***
*** Remember to include the error message listed below and, if possible,
*** include a *minimal* running example to reproduce the error.
***
*** -------------------------------------------------------------------------
*** Error: Unable to create Dirichlet boundary condition.
*** Reason: Illegal value dimension (3), expecting (4).
*** Where: This error was encountered inside DirichletBC.cpp.
*** Process: 0
***
*** DOLFIN version: 2019.1.0
*** Git changeset:
*** ----------------------