As this demo is created for python2.7, and especially dolfin 2016.2.0, I would use that version to run the tutorials. If you would like to use a later version of dolfin for the tutorials, you will have to convert the tutorial to python3 syntax. Most of the changes from python2.7 to 3 can be done automatically by using:
2to3 filename.py -w
.
However this demo (with the specific parameters) will not run with dolfin 2018.1.0.
You should use the latest stable release:
2019.1.0
Note that
is not the correct syntax, and should be:
prm["krylov_solver"]["absolute_tolerance"] = abs_tol
Here is a converted version of the tutorial that runs with the latest release of dolfin.
"""
FEniCS tutorial demo program: Poisson equation with a combination of
Dirichlet, Neumann, and Robin boundary conditions.
-div(kappa*grad(u)) = f
This program illustrates a number of different topics:
- How to solve a problem using three different approaches of varying
complexity: solve / LinearVariationalSolver / assemble + solve
- How to compute fluxes
- How to set combinations of boundary conditions
- How to set parameters for linear solvers
- How to create manufactured solutions with SymPy
- How to create unit tests
- How to represent solutions as structured fields
"""
from fenics import *
from boxfield import *
import numpy as np
#---------------------------------------------------------------------
# Solvers
#---------------------------------------------------------------------
def solver(kappa, f, u_D, Nx, Ny,
degree=1,
linear_solver='Krylov',
abs_tol=1E-5,
rel_tol=1E-3,
max_iter=1000):
"""
Solve -div(kappa*grad(u) = f on (0, 1) x (0, 1) with 2*Nx*Ny Lagrange
elements of specified degree and u = u_D on the boundary.
"""
# Create mesh and define function space
mesh = UnitSquareMesh(Nx, Ny)
V = FunctionSpace(mesh, 'P', degree)
# Define boundary condition
def boundary(x, on_boundary):
return on_boundary
bc = DirichletBC(V, u_D, boundary)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = kappa*dot(grad(u), grad(v))*dx
L = f*v*dx
# Set linear solver parameters
prm = LinearVariationalSolver.default_parameters()
if linear_solver == 'Krylov':
prm["linear_solver"] = 'gmres'
prm["preconditioner"] = 'ilu'
prm["krylov_solver"]["absolute_tolerance"] = abs_tol
prm["krylov_solver"]["relative_tolerance"] = rel_tol
prm["krylov_solver"]["maximum_iterations"] = max_iter
else:
prm["linear_solver"] = 'lu'
# Compute solution
u = Function(V)
solve(a == L, u, bc, solver_parameters=prm)
return u
def solver_objects(kappa, f, u_D, Nx, Ny,
degree=1,
linear_solver='Krylov',
abs_tol=1E-5,
rel_tol=1E-3,
max_iter=1000):
"Same as the solver() function but using LinearVariationalSolver"
# Create mesh and define function space
mesh = UnitSquareMesh(Nx, Ny)
V = FunctionSpace(mesh, 'P', degree)
# Define boundary condition
def boundary(x, on_boundary):
return on_boundary
bc = DirichletBC(V, u_D, boundary)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = kappa*dot(grad(u), grad(v))*dx
L = f*v*dx
# Compute solution
u = Function(V)
problem = LinearVariationalProblem(a, L, u, bc)
solver = LinearVariationalSolver(problem)
# Set linear solver parameters
prm = solver.parameters
if linear_solver == 'Krylov':
prm.linear_solver = 'gmres'
prm.preconditioner = 'ilu'
prm.krylov_solver.absolute_tolerance = abs_tol
prm.krylov_solver.relative_tolerance = rel_tol
prm.krylov_solver.maximum_iterations = max_iter
else:
prm.linear_solver = 'lu'
# Compute solution
solver.solve()
return u
def solver_linalg(kappa, f, u_D, Nx, Ny,
degree=1,
linear_solver='Krylov',
abs_tol=1E-5,
rel_tol=1E-3,
max_iter=1000):
"Same as the solver() function but assembling and solving Ax = b"
# Create mesh and define function space
mesh = UnitSquareMesh(Nx, Ny)
V = FunctionSpace(mesh, 'P', degree)
# Define boundary condition
def boundary(x, on_boundary):
return on_boundary
bc = DirichletBC(V, u_D, boundary)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = kappa*dot(grad(u), grad(v))*dx
L = f*v*dx
# Assemble linear system
A = assemble(a)
b = assemble(L)
# Apply boundary conditions
bc.apply(A, b)
# Create linear solver and set parameters
if linear_solver == 'Krylov':
solver = KrylovSolver('gmres', 'ilu')
solver.parameters.absolute_tolerance = abs_tol
solver.parameters.relative_tolerance = rel_tol
solver.parameters.maximum_iterations = max_iter
else:
solver = LUSolver()
# Compute solution
u = Function(V)
solver.solve(A, u.vector(), b)
return u
def solver_bcs(kappa, f, boundary_conditions, Nx, Ny,
degree=1,
subdomains=[],
linear_solver='Krylov',
abs_tol=1E-5,
rel_tol=1E-3,
max_iter=1000):
"""
Solve -div(kappa*grad(u) = f on (0, 1) x (0, 1) with 2*Nx*Ny Lagrange
elements of specified degree and u = u_D on the boundary. This version
of the solver uses a specified combination of Dirichlet, Neumann, and
Robin boundary conditions.
"""
# Create mesh and define function space
mesh = UnitSquareMesh(Nx, Ny)
V = FunctionSpace(mesh, 'P', degree)
# Check if we have subdomains
if subdomains:
if not isinstance(kappa, (list, tuple, np.ndarray)):
raise TypeError(
'kappa must be array if we have sudomains, not %s'
% type(kappa))
materials = CellFunction('size_t', mesh)
materials.set_all(0)
for m, subdomain in enumerate(subdomains[1:], 1):
subdomain.mark(materials, m)
kappa_values = kappa
V0 = FunctionSpace(mesh, 'DG', 0)
kappa = Function(V0)
help = np.asarray(materials.array(), dtype=np.int32)
kappa.vector()[:] = np.choose(help, kappa_values)
else:
if not isinstance(kappa, (Expression, Constant)):
raise TypeError(
'kappa is type %s, must be Expression or Constant'
% type(kappa))
# Define boundary subdomains
tol = 1e-14
class BoundaryX0(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and near(x[0], 0, tol)
class BoundaryX1(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and near(x[0], 1, tol)
class BoundaryY0(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and near(x[1], 0, tol)
class BoundaryY1(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and near(x[1], 1, tol)
# Mark boundaries
boundary_markers = MeshFunction('size_t', mesh, mesh.topology().dim()-1, 0)
boundary_markers.set_all(9999)
bx0 = BoundaryX0()
bx1 = BoundaryX1()
by0 = BoundaryY0()
by1 = BoundaryY1()
bx0.mark(boundary_markers, 0)
bx1.mark(boundary_markers, 1)
by0.mark(boundary_markers, 2)
by1.mark(boundary_markers, 3)
# Redefine boundary integration measure
ds = Measure('ds', domain=mesh, subdomain_data=boundary_markers)
# Collect Dirichlet conditions
bcs = []
for i in boundary_conditions:
if 'Dirichlet' in boundary_conditions[i]:
bc = DirichletBC(V, boundary_conditions[i]['Dirichlet'],
boundary_markers, i)
bcs.append(bc)
debug1 = False
if debug1:
# Print all vertices that belong to the boundary parts
for x in mesh.coordinates():
if bx0.inside(x, True): print('%s is on x = 0' % x)
if bx1.inside(x, True): print('%s is on x = 1' % x)
if by0.inside(x, True): print('%s is on y = 0' % x)
if by1.inside(x, True): print('%s is on y = 1' % x)
# Print the Dirichlet conditions
print('Number of Dirichlet conditions:', len(bcs))
if V.ufl_element().degree() == 1: # P1 elements
d2v = dof_to_vertex_map(V)
coor = mesh.coordinates()
for i, bc in enumerate(bcs):
print('Dirichlet condition %d' % i)
boundary_values = bc.get_boundary_values()
for dof in boundary_values:
print(' dof %2d: u = %g' % (dof, boundary_values[dof]))
if V.ufl_element().degree() == 1:
print(' at point %s' %
(str(tuple(coor[d2v[dof]].tolist()))))
# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
# Collect Neumann integrals
integrals_N = []
for i in boundary_conditions:
if 'Neumann' in boundary_conditions[i]:
if boundary_conditions[i]['Neumann'] != 0:
g = boundary_conditions[i]['Neumann']
integrals_N.append(g*v*ds(i))
# Collect Robin integrals
integrals_R_a = []
integrals_R_L = []
for i in boundary_conditions:
if 'Robin' in boundary_conditions[i]:
r, s = boundary_conditions[i]['Robin']
integrals_R_a.append(r*u*v*ds(i))
integrals_R_L.append(r*s*v*ds(i))
# Simpler Robin integrals
integrals_R = []
for i in boundary_conditions:
if 'Robin' in boundary_conditions[i]:
r, s = boundary_conditions[i]['Robin']
integrals_R.append(r*(u - s)*v*ds(i))
# Sum integrals to define variational problem
a = kappa*dot(grad(u), grad(v))*dx + sum(integrals_R_a)
L = f*v*dx - sum(integrals_N) + sum(integrals_R_L)
# Simpler variational problem
F = kappa*dot(grad(u), grad(v))*dx + \
sum(integrals_R) - f*v*dx + sum(integrals_N)
a, L = lhs(F), rhs(F)
# Set linear solver parameters
prm = LinearVariationalSolver.default_parameters()
if linear_solver == 'Krylov':
prm["linear_solver"] = 'gmres'
prm["preconditioner"] = 'ilu'
prm["krylov_solver"]["absolute_tolerance"] = abs_tol
prm["krylov_solver"]["relative_tolerance"] = rel_tol
prm["krylov_solver"]["maximum_iterations"] = max_iter
else:
prm["linear_solver"] = 'lu'
# Compute solution
u = Function(V)
solve(a == L, u, bcs, solver_parameters=prm)
return u
#---------------------------------------------------------------------
# Utility functions
#---------------------------------------------------------------------
def compute_errors(u_e, u):
"""Compute various measures of the error u - u_e, where
u is a finite element Function and u_e is an Expression."""
# Get function space
V = u.function_space()
# Explicit computation of L2 norm
error = (u - u_e)**2*dx
E1 = sqrt(abs(assemble(error)))
# Explicit interpolation of u_e onto the same space as u
u_e_ = interpolate(u_e, V)
error = (u - u_e_)**2*dx
E2 = sqrt(abs(assemble(error)))
# Explicit interpolation of u_e to higher-order elements.
# u will also be interpolated to the space Ve before integration
Ve = FunctionSpace(V.mesh(), 'P', 5)
u_e_ = interpolate(u_e, Ve)
error = (u - u_e)**2*dx
E3 = sqrt(abs(assemble(error)))
# Infinity norm based on nodal values
u_e_ = interpolate(u_e, V)
E4 = abs(u_e_.vector().get_local() - u.vector().get_local()).max()
# L2 norm
E5 = errornorm(u_e, u, norm_type='L2', degree_rise=3)
# H1 seminorm
E6 = errornorm(u_e, u, norm_type='H10', degree_rise=3)
# Collect error measures in a dictionary with self-explanatory keys
errors = {'u - u_e': E1,
'u - interpolate(u_e, V)': E2,
'interpolate(u, Ve) - interpolate(u_e, Ve)': E3,
'infinity norm (of dofs)': E4,
'L2 norm': E5,
'H10 seminorm': E6}
return errors
def compute_convergence_rates(u_e, f, u_D, kappa,
max_degree=3, num_levels=5):
"Compute convergences rates for various error norms"
h = {} # discretization parameter: h[degree][level]
E = {} # error measure(s): E[degree][level][error_type]
# Iterate over degrees and mesh refinement levels
degrees = list(range(1, max_degree + 1))
for degree in degrees:
n = 8 # coarsest mesh division
h[degree] = []
E[degree] = []
for i in range(num_levels):
h[degree].append(1.0 / n)
u = solver(kappa, f, u_D, n, n, degree, linear_solver='direct')
errors = compute_errors(u_e, u)
E[degree].append(errors)
print('2 x (%d x %d) P%d mesh, %d unknowns, E1 = %g' %
(n, n, degree, u.function_space().dim(), errors['u - u_e']))
n *= 2
# Compute convergence rates
from math import log as ln # log is a fenics name too
etypes = list(E[1][0].keys())
rates = {}
for degree in degrees:
rates[degree] = {}
for error_type in sorted(etypes):
rates[degree][error_type] = []
for i in range(1, num_levels):
Ei = E[degree][i][error_type]
Eim1 = E[degree][i - 1][error_type]
r = ln(Ei / Eim1) / ln(h[degree][i] / h[degree][i - 1])
rates[degree][error_type].append(round(r, 2))
return etypes, degrees, rates
def flux(u, kappa):
"Return -kappa*grad(u) projected into same space as u"
V = u.function_space()
mesh = V.mesh()
degree = V.ufl_element().degree()
W = VectorFunctionSpace(mesh, 'P', degree)
flux_u = project(-kappa*grad(u), W)
return flux_u
def normalize_solution(u):
"Normalize u: return u divided by max(u)"
u_array = u.vector().get_local()
u_max = np.max(np.abs(u_array))
u_array /= u_max
u.vector()[:] = u_array
#u.vector().set_local(u_array) # alternative
return u
#---------------------------------------------------------------------
# Unit tests (functions beginning with test_)
# These unit tests can be run by calling `py.test poisson_extended.py`
#---------------------------------------------------------------------
def test_solvers():
"Reproduce exact solution to machine precision with different solvers"
solver_functions = (solver, solver_objects, solver_linalg)
tol = {'direct': {1: 1E-11, 2: 1E-11, 3: 1E-11},
'Krylov': {1: 1E-14, 2: 1E-05, 3: 1E-03}}
u_D = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]', degree=2)
kappa = Expression('x[0] + x[1]', degree=1)
f = Expression('-8*x[0] - 10*x[1]', degree=1)
for Nx, Ny in [(3, 3), (3, 5), (5 ,3)]:
for degree in 1, 2, 3:
for linear_solver in 'direct', 'Krylov':
for solver_function in solver_functions:
print('solving on 2 x (%d x %d) mesh with P%d elements'
% (Nx, Ny, degree)),
print(' %s solver, %s function' %
(linear_solver, solver_function.__name__))
u = solver_function(kappa, f, u_D, Nx, Ny, degree,
linear_solver=linear_solver,
abs_tol=0.1*tol[linear_solver][degree],
rel_tol=0.1*tol[linear_solver][degree])
V = u.function_space()
u_D_Function = interpolate(u_D, V)
u_D_array = u_D_Function.vector().get_local()
error_max = (u_D_array - u.vector().get_local()).max()
msg = 'max error: %g for 2 x (%d x %d) mesh, ' \
'degree = %d, %s solver, %s' % \
(error_max, Nx, Ny, degree, linear_solver,
solver_function.__name__)
print(msg)
assert error_max < tol[linear_solver][degree], msg
def test_normalize_solution():
u_D = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]', degree=2)
f = Constant(-6.0)
u = solver(f, u_D, 4, 2, 1, linear_solver='direct')
u = normalize_solution(u)
computed = u.vector().get_local().max()
expected = 1.0
assert abs(expected - computed) < 1E-15
#---------------------------------------------------------------------
# Demo programs
#---------------------------------------------------------------------
def demo_test():
"Solve test problem and plot solution"
u_D = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]', degree=2)
kappa = Expression('x[0] + x[1]', degree=1)
f = Expression('-8*x[0] - 10*x[1]', degree=1)
u = solver(kappa, f, u_D, 8, 8, 1)
vtkfile = File('poisson_extended/solution_test.pvd')
vtkfile << u
plot(u)
def demo_flux(Nx=8, Ny=8):
"Solve test problem and compute flux"
# Compute solution
u_D = Expression('1 + x[0]*x[0] + 2*x[1]*x[1]', degree=2)
kappa = Expression('x[0] + x[1]', degree=1)
f = Expression('-8*x[0] - 10*x[1]', degree=1)
u = solver(kappa, f, u_D, Nx, Ny, 1, linear_solver='direct')
# Compute and plot flux
flux_u = flux(u, kappa)
flux_u_x, flux_u_y = flux_u.split(deepcopy=True)
plot(u, title=u.name())
plot(flux_u, title=flux_u.name())
plot(flux_u_x, title=flux_u_x.name())
plot(flux_u_y, title=flux_u_y.name())
# Exact flux expressions
u_e = lambda x, y: 1 + x**2 + 2*y**2
flux_x_exact = lambda x, y: -(x+y)*2*x
flux_y_exact = lambda x, y: -(x+y)*4*y
# Compute error in flux
coor = u.function_space().mesh().coordinates()
for i, value in enumerate(flux_u_x.compute_vertex_values()):
print('vertex %d, x = %s, -p*u_x = %g, error = %g' %
(i, tuple(coor[i]), value, flux_x_exact(*coor[i]) - value))
for i, value in enumerate(flux_u_y.compute_vertex_values()):
print('vertex %d, x = %s, -p*u_y = %g, error = %g' %
(i, tuple(coor[i]), value, flux_y_exact(*coor[i]) - value))
def demo_convergence_rates():
"Compute convergence rates in various norms for P1, P2, P3"
# Define exact solution and coefficients
omega = 1.0
u_e = Expression('sin(omega*pi*x[0])*sin(omega*pi*x[1])',
degree=6, omega=omega)
f = 2*omega**2*pi**2*u_e
u_D = Constant(0)
kappa = Constant(1)
# Compute and print convergence rates
etypes, degrees, rates = compute_convergence_rates(u_e, f, u_D, kappa)
for error_type in etypes:
print('\n' + error_type)
for degree in degrees:
print('P%d: %s' % (degree, str(rates[degree][error_type])[1:-1]))
def demo_structured_mesh():
"Use structured mesh data to create plots with Matplotlib"
# Define exact solution (Mexican hat) and coefficients
from sympy import exp, sin, pi
import sympy as sym
H = lambda x: exp(-16*(x-0.5)**2)*sin(3*pi*x)
x, y = sym.symbols('x[0], x[1]')
u = H(x)*H(y)
u_code = sym.printing.ccode(u)
u_code = u_code.replace('M_PI', 'pi')
print('C code for u:', u_code)
u_D = Expression(u_code, degree=1)
kappa = 1 # Note: Can't use Constant(1) here because of sym.diff (!)
f = sym.diff(-kappa*sym.diff(u, x), x) + \
sym.diff(-kappa*sym.diff(u, y), y)
f = sym.simplify(f)
f_code = sym.printing.ccode(f)
f_code = f_code.replace('M_PI', 'pi')
f = Expression(f_code, degree=1)
flux_u_x_exact = sym.lambdify([x, y], -kappa*sym.diff(u, x),
modules='numpy')
print('C code for f:', f_code)
kappa = Constant(1)
nx = 22; ny = 22
# Compute solution and represent as a structured field
u = solver(kappa, f, u_D, nx, ny, 1, linear_solver='direct')
u_box = FEniCSBoxField(u, (nx, ny))
# Set coordinates and extract values
X = 0; Y = 1
u_ = u_box.values
# Iterate over 2D mesh points (i, j)
debug2 = False
if debug2:
for j in range(u_.shape[1]):
for i in range(u_.shape[0]):
print('u[%d, %d] = u(%g, %g) = %g' %
(i, j,
u_box.grid.coor[X][i], u_box.grid.coor[Y][j],
u_[i, j]))
# Make surface plot
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
cv = u_box.grid.coorv
ax.plot_surface(cv[X], cv[Y], u_, cmap=cm.coolwarm,
rstride=1, cstride=1)
plt.title('Surface plot of solution')
plt.savefig('poisson_extended/surface_plot.png')
plt.savefig('poisson_extended/surface_plot.pdf')
# Make contour plot
fig = plt.figure()
ax = fig.gca()
cs = ax.contour(cv[X], cv[Y], u_, 7)
plt.clabel(cs)
plt.axis('equal')
plt.title('Contour plot of solution')
plt.savefig('poisson_extended/contour_plot.png')
plt.savefig('poisson_extended/contour_plot.pdf')
# Plot u along a line y = const and compare with exact solution
start = (0, 0.4)
x, u_val, y_fixed, snapped = u_box.gridline(start, direction=X)
u_e_val = [u_D((x_, y_fixed)) for x_ in x]
plt.figure()
plt.plot(x, u_val, 'r-')
plt.plot(x, u_e_val, 'bo')
plt.legend(['P1 elements', 'exact'], loc='best')
plt.title('Solution along line y=%g' % y_fixed)
plt.xlabel('x'); plt.ylabel('u')
plt.savefig('poisson_extended/line_plot.png')
plt.savefig('poisson_extended/line_plot.pdf')
# Plot the numerical and exact flux along the same line
flux_u = flux(u, kappa)
flux_u_x, flux_u_y = flux_u.split(deepcopy=True)
flux2_x = flux_u_x if flux_u_x.ufl_element().degree() == 1 \
else interpolate(flux_x,
FunctionSpace(u.function_space().mesh(), 'P', 1))
flux_u_x_box = FEniCSBoxField(flux_u_x, (nx,ny))
x, flux_u_val, y_fixed, snapped = \
flux_u_x_box.gridline(start, direction=X)
y = y_fixed
plt.figure()
plt.plot(x, flux_u_val, 'r-')
plt.plot(x, flux_u_x_exact(x, y_fixed), 'bo')
plt.legend(['P1 elements', 'exact'], loc='best')
plt.title('Flux along line y=%g' % y_fixed)
plt.xlabel('x'); plt.ylabel('u')
plt.savefig('poisson_extended/line_flux.png')
plt.savefig('poisson_extended/line_flux.pdf')
plt.show()
def demo_bcs():
"Compute and plot solution using a combination of boundary conditions"
# Define manufactured solution in sympy and derive f, g, etc.
import sympy as sym
x, y = sym.symbols('x[0], x[1]') # needed by UFL
u = 1 + x**2 + 2*y**2 # exact solution
u_e = u # exact solution
u_00 = u.subs(x, 0) # restrict to x = 0
u_01 = u.subs(x, 1) # restrict to x = 1
f = -sym.diff(u, x, 2) - sym.diff(u, y, 2) # -Laplace(u)
f = sym.simplify(f) # simplify f
g = -sym.diff(u, y).subs(y, 1) # compute g = -du/dn
r = 1000 # Robin data, arbitrary
s = u # Robin data, u = s
# Collect variables
variables = [u_e, u_00, u_01, f, g, r, s]
# Turn into C/C++ code strings
variables = [sym.printing.ccode(var) for var in variables]
# Turn into FEniCS Expressions
variables = [Expression(var, degree=2) for var in variables]
# Extract variables
u_e, u_00, u_01, f, g, r, s = variables
# Define boundary conditions
boundary_conditions = {0: {'Dirichlet': u_00}, # x = 0
1: {'Dirichlet': u_01}, # x = 1
2: {'Robin': (r, s)}, # y = 0
3: {'Neumann': g}} # y = 1
# Compute solution
kappa = Constant(1)
Nx = Ny = 8
u = solver_bcs(kappa, f, boundary_conditions, Nx, Ny,
degree=1, linear_solver='direct')
# Compute maximum error at vertices
mesh = u.function_space().mesh()
vertex_values_u_e = u_e.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
error_max = np.max(np.abs(vertex_values_u_e -
vertex_values_u))
print('error_max =', error_max)
# Save and plot solution
vtkfile = File('poisson_extended/solution_bcs.pvd')
vtkfile << u
plot(u)
def demo_solvers():
"Reproduce exact solution to machine precision with different linear solvers"
# Tolerance for tests
tol = 1E-10
# Define exact solution and coefficients
import sympy as sym
x, y = sym.symbols('x[0], x[1]')
u = 1 + x**2 + 2*y**2
f = -sym.diff(u, x, 2) - sym.diff(u, y, 2)
f = sym.simplify(f)
# Generate C/C++ code for UFL expressions
u_code = sym.printing.ccode(u)
f_code = sym.printing.ccode(f)
# Define FEniCS Expressions
u_e = Expression(u_code, degree=2)
f = Expression(f_code, degree=2)
kappa = Constant(1)
# Define boundary conditions
boundary_conditions = {0: {'Dirichlet': u_e},
1: {'Dirichlet': u_e},
2: {'Dirichlet': u_e},
3: {'Dirichlet': u_e}}
# Iterate over meshes and degrees
for Nx, Ny in [(3, 3), (3, 5), (5, 3), (20, 20)]:
for degree in 1, 2, 3:
for linear_solver in 'direct', 'Krylov':
print('\nSolving on 2 x (%d x %d) mesh with P%d elements '
'using solver "%s".' \
% (Nx, Ny, degree, linear_solver)),
# Compute solution
u = solver_bcs(kappa, f, boundary_conditions, Nx, Ny,
degree=degree,
linear_solver=linear_solver,
abs_tol=0.001*tol,
rel_tol=0.001*tol)
# Compute maximum error at vertices
mesh = u.function_space().mesh()
vertex_values_u_e = u_e.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
error_max = np.max(np.abs(vertex_values_u_e -
vertex_values_u))
print('error_max =', error_max)
assert error_max < tol
if __name__ == '__main__':
# List of demos
demos = (demo_test,
demo_flux,
demo_convergence_rates,
demo_structured_mesh,
demo_bcs,
demo_solvers)
# Pick a demo
for nr in range(len(demos)):
print('%d: %s (%s)' % (nr, demos[nr].__doc__, demos[nr].__name__))
print('')
nr = eval(input('Pick a demo: '))
# Run demo
demos[nr]()
# Hold plot
import matplotlib.pyplot as plt
plt.savefig("figure.png")