Hi,
I am currently trying to implement the Helmholtz equation with an accurate Perfectly Matched Layer.
I am currently using a scattering field equation
p = p_s + p_i,
where p_s is the scattered wave field and p_i is an incident wave field described by the particular solution
p_i(x)=p_0 \exp(i k x)
and p, p_s and p_i conform to the Helmholtz Equation
\Delta p +k^2 p = 0.
Furthermore am I using the PML formulation shown in Johnson [Johnson, S. G. Notes on Perfectly Matched Layers (PMLs). (2021)], in particular the complex analytical continuation of x which yields the transformation
\frac{\partial}{\partial x} \rightarrow \frac{1}{1+j\frac{\sigma(x)}{\omega}}\frac{\partial}{\partial x}=\alpha(x)\frac{\partial}{\partial x}.
Inserting the PML transformation into the strong formulation assuming a 2D domain and truncation only in x-direction yields
\alpha(x) \frac{\partial}{\partial x} \left( \alpha (x)\frac{\partial p}{\partial x} \right) + \frac{\partial^2 p}{\partial y^2}+k^2 p = 0.
Multiplying with a test function \chi (\xi) (\xi :=(x, y)^\top) and integrating over the domain gives
\int_\Omega \chi(\xi) \alpha \alpha_x(\xi)p_x(\xi) + \chi(\xi) \alpha^2(x) p_{xx}(\xi) + \chi(\xi) p_{yy}(\xi)+k^2 \chi(\xi)p(\xi) \,\mathrm{d}\Omega = 0
by integrating elements of the integral with second order derivatives by parts gives
\int_\Omega \chi(\xi) \alpha^2(x) p_{xx}(\xi) \,\mathrm{d}\Omega = \int_\Gamma \chi(\xi) \alpha^2(x) p_x(\xi)\,\mathrm{d}\Gamma - \int_\Omega \alpha^2(x) \chi_x(\xi) p_x(\xi) + 2 \alpha(x)\chi(\xi)\alpha_x(x)p_x(\xi) \,\mathrm{d}\Omega,
\int_\Omega \chi(\xi) p_{yy}(\xi) = \int_\Gamma \chi(\xi) p_y(\xi) \,\mathrm{d}\Gamma - \int_\Omega \chi_y(\xi) p_y(\xi) \,\mathrm{d}\Omega,
where \Gamma is the boundary of the domain \Omega.
My current implementation is the following (I am assuming that the boundary integrals are zero)
from mpi4py import MPI
import numpy as np
from ufl import grad, inner, dx, as_vector, TestFunction, TrialFunction
from dolfinx.fem.petsc import LinearProblem
from dolfinx import mesh, fem, io
def grad_x(func):
return inner(as_vector((1, 0)), grad(func))
def grad_y(func):
return inner(as_vector((0, 1)), grad(func))
# domain constants
x_min = 0.
x_max = 10.
y_min = 0.
y_max = 1.
# physics constants
k = 1.
c = 1.
p_0 = 1.
# pml constants
rt = 1e-25
shape_factor = 3
pml_start = 5.
sigma_0 = -(shape_factor + 1) * np.log(rt) / (4.0 * (x_max - pml_start))
msh = mesh.create_rectangle(comm=MPI.COMM_WORLD,
points=np.array(((x_min, y_min), (x_max, y_max))), n=(160, 16),
cell_type=mesh.CellType.triangle)
v = fem.FunctionSpace(msh, ("CG", 1))
# incident wave
p_i = fem.Function(v)
p_i.interpolate(lambda x: p_0 * np.exp(1j * k * x[0]))
# pml alpha
alpha = fem.Function(v)
alpha.interpolate(lambda x: 1 / (1 + 1j * sigma_0 * (x[0] >= pml_start) * (x[0] - pml_start) / (x_max - pml_start)))
# Define variational problem
p_s = TrialFunction(v)
xi = TestFunction(v)
p_sol = fem.Function(v)
p_sol.name = "p"
lhs = (
xi * alpha * grad_x(alpha) * grad_x(p_s) * dx
- (alpha ** 2) * grad_x(xi) * grad_x(p_s) * dx
- 2 * alpha * xi * grad_x(alpha) * grad_x(p_s) * dx
- grad_y(xi) * grad_y(p_s) * dx
+ k ** 2 * xi * p_s * dx
)
rhs = (
- xi * alpha * grad_x(alpha) * grad_x(p_i) * dx
+ (alpha ** 2) * grad_x(xi) * grad_x(p_i) * dx
+ 2 * alpha * xi * grad_x(alpha) * grad_x(p_i) * dx
+ grad_y(xi) * grad_y(p_i) * dx
- k ** 2 * xi * p_i * dx
)
problem = LinearProblem(lhs, rhs, u=p_sol,
petsc_options={
"ksp_type": "preonly",
"pc_type": "cholesky",
"pc_factor_mat_solver_type": "mumps"
})
problem.solve()
p_sol.x.array[:] = p_sol.x.array[:] + p_i.x.array[:]
# just for quick visualization
v_plot = fem.FunctionSpace(msh, ("CG", 1))
f_plot = fem.Function(v_plot)
f_plot.interpolate(p_sol)
with io.XDMFFile(MPI.COMM_WORLD, "out.xdmf", "w", encoding=io.XDMFFile.Encoding.HDF5) as fh:
fh.write_mesh(msh)
fh.write_function(f_plot)
I do not get any warnings, but the written mesh does not contain any point-data. I think this is caused by the problem not being well posed, because of my implementation. I would appreciate any tips or hints.