Hi there,
I am a newbie for the nonlinear problems with FEniCSx. I try to solve nonlinear diffusion equation on a circular disk The equation reads:
\frac{\partial n}{\partial t} = D \nabla \cdot [(n/n_0)^p]\nabla n + s n (1-(n/n_0))
where n_0 is the initial condition of each time step, p is an integer that defines nonlinearity of diffusion and s is a float that defines the reaction speed. At t=0, the edge of the circle is n_D=1.0 \ \text{on} \ \partial \Omega.
I highly benefited from @dokken’s excellent tutorial, however I have convergence issues when p is nonzero.
I have the MWE below:
from dolfinx.fem import functionspace, Function, locate_dofs_topological, dirichletbc
from ufl import TestFunction, Measure, grad, dot
from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.io.gmshio import model_to_mesh
from dolfinx.nls.petsc import NewtonSolver
from dolfinx.io import XDMFFile
from petsc4py import PETSc
from dolfinx import log
from mpi4py import MPI
import gmsh
r_wound = 0.5
D = 2E-9
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 0)
gmsh.model.add(__name__)
wound = gmsh.model.occ.addDisk(0, 0, 0, r_wound, r_wound)
gmsh.model.occ.synchronize()
gmsh.model.addPhysicalGroup(1, [1], tag=1) # wound edge tag
gmsh.model.addPhysicalGroup(2, [1], tag=1) # wound domain tag
gmsh.option.setNumber("Mesh.MeshSizeMax", r_wound/20)
gmsh.option.setNumber("Mesh.Optimize", 1)
gmsh.model.mesh.generate(2)
mesh, subdomains, facet_tags = model_to_mesh(gmsh.model, MPI.COMM_WORLD, rank=0, gdim=2)
cell_density = +1.0
edge_tag = 1
degree = 1
V = functionspace(mesh, ("Lagrange", degree))
u = Function(V)
# Define the boundary conditions
u_D = Function(V)
u_D.x.array[:] = cell_density
facets = facet_tags.find(edge_tag)
dofs = locate_dofs_topological(V, mesh.topology.dim-1, facets)
bc = dirichletbc(u_D, dofs)
xdmf = XDMFFile(V.mesh.comm, "solution.xdmf", "w")
xdmf.write_mesh(V.mesh)
# Define initial condition
u_n = Function(V)
u_n.name = "u_n"
facet_markers = facet_tags.find(edge_tag)
facet_dofs = locate_dofs_topological(V, mesh.topology.dim-1, facet_markers)
u_n.x.array[facet_dofs] = cell_density
u_n.x.scatter_forward()
# define solution function
uh = Function(V)
uh.name = "phi"
uh.x.array[:] = 1E-6
uh.x.array[facet_dofs] = cell_density
# Define temporal parameters
t = 0 # Start time (s)
T_hours = 100
T = T_hours * 60* 60 # (s)
num_steps = 100
dt = T / num_steps # time step size
s = 8E-6 # 1/s
v = TestFunction(V)
dx = Measure("dx", domain=V.mesh, subdomain_data=subdomains)
xdmf.write_function(uh, t)
f = s*uh*(1-(uh/u_n))
def q(uh, u_n, p=0):
return (uh/u_n)**p
dt = T / num_steps # time step size
F = uh * v * dx + dt * D * q(uh, u_n, p=4)*dot(grad(uh), grad(v)) * dx - \
(u_n + dt * f) * v * dx
problem = NonlinearProblem(F, uh, bcs=[bc])
solver = NewtonSolver(MPI.COMM_WORLD, problem)
solver.convergence_criterion = "incremental"
solver.rtol = 1e-8
solver.report = True
ksp = solver.krylov_solver
opts = PETSc.Options()
option_prefix = ksp.getOptionsPrefix()
opts[f"{option_prefix}ksp_type"] = "gmres"
opts[f"{option_prefix}ksp_rtol"] = 1.0e-8
opts[f"{option_prefix}pc_type"] = "hypre"
opts[f"{option_prefix}pc_hypre_type"] = "boomeramg"
opts[f"{option_prefix}pc_hypre_boomeramg_max_iter"] = 1
opts[f"{option_prefix}pc_hypre_boomeramg_cycle_type"] = "v"
ksp.setFromOptions()
# Solve
for i in range(num_steps):
t += dt
log.set_log_level(log.LogLevel.INFO)
n, converged = solver.solve(uh)
# Update solution at previous time step (u_n)
u_n.x.array[:] = uh.x.array
# Write solution to file
xdmf.write_function(uh, t)
xdmf.close()
What would you suggest to make this problem converge for p=1,2,3,4,5?
I really appreciate you advices.
All the best,
Ekrem