I’m solving a linear elasticity problem and I want to get the residual from the solver. I created a function that calculates it from the assembled matrices and the solution, but I think that it’s something that I should be able to get directly from the KrylovSolver object without doing a manual calculation. I didn’t find anything in the documentation so I thought I’d ask here.
from fenics import *
from fenics_adjoint import *
import numpy as np
from ufl import nabla_div
# Define parameters
nelx = 30
nely = 15
nelz = 15
lx = float(nelx)
ly = float(nely)
lz = float(nelz)
E = 1.04
v = 0.3
mu = Constant(E / (2*(1+v)))
lmbda = Constant(E*v / ((1+v)*(1-2*v)))
# Create a mesh
mesh = BoxMesh.create(
[Point(0.0, 0.0, 0.0), Point(lx, ly, lz)], # define opposing corners
[nelx, nely, nelz], # number of elements in each direction
CellType.Type.hexahedron)
mesh = Mesh(mesh)
# FE function space and functions
V = VectorFunctionSpace(mesh, "CG", 1)
u_sol = Function(V)
u = TrialFunction(V)
v = TestFunction(V)
# boundary condition
class Left(SubDomain):
def inside(self, x, on_boundary):
return near(x[0], 0.)
left = Left()
bc = DirichletBC(V, Constant((0., 0., 0.)), left)
# Stress and strain functions
def sigma(u):
n = len(u) # size of u
return lmbda*nabla_div(u)*Identity(n) + 2*mu*epsilon(u)
def epsilon(u):
return 0.5*(nabla_grad(u) + nabla_grad(u).T)
# Residual
def get_residual():
A_np = A.array()
u_np = u_sol.vector().get_local()
b_np = b.get_local()
res = np.dot(A_np, u_np) - b_np
return res
# Define forms
f = Constant((0., 0., -1.))
L = dot(f, v) * dx
a = inner(sigma(u), nabla_grad(v)) * dx
# Solve
A, b = assemble_system(a, L, bc)
solver = KrylovSolver("cg", "ilu")
solver.solve(A, u_sol.vector(), b)
res = get_residual()
So by residual, I mean res = A*u - b
where A is the stiffness matrix, b is the force vector and u is the solution. Thanks in advance.