Problems with a stationary boundary condition in the Navier-Stokes equation

Hello,

I was experimenting with the following benchmark DFG 2D-3, where I changed the inlet boundary condition to one that does not depend on time. When I look at the results at time step No. 2, the arrows seem to go back (attached is the following image).

However, in the benchmark with the original conditions, I do not have this issue. Attached is the code, thank you very much.

import gmsh
import numpy as np
import tqdm.autonotebook
from mpi4py import MPI
from dolfinx.fem import (Constant, Function, functionspace, dirichletbc, form, locate_dofs_topological)
from dolfinx.fem.petsc import (apply_lifting, assemble_matrix, assemble_vector,
                               create_vector, create_matrix, set_bc)
from dolfinx.io import (VTXWriter, gmshio)
from ufl import (TestFunction, TrialFunction, div, dot, ds, dx, inner, lhs, grad, nabla_grad, rhs, sym)

gmsh.initialize()
L = 2.2
H = 0.41
c_x = c_y = 0.2
r = 0.05
gdim = 2
mesh_comm = MPI.COMM_WORLD
model_rank = 0
if mesh_comm.rank == model_rank:
    rectangle = gmsh.model.occ.addRectangle(0, 0, 0, L, H, tag=1)
    obstacle = gmsh.model.occ.addDisk(c_x, c_y, 0, r, r)

if mesh_comm.rank == model_rank:
    fluid = gmsh.model.occ.cut([(gdim, rectangle)], [(gdim, obstacle)])
    gmsh.model.occ.synchronize()

fluid_marker = 1
if mesh_comm.rank == model_rank:
    volumes = gmsh.model.getEntities(dim=gdim)
    assert (len(volumes) == 1)
    gmsh.model.addPhysicalGroup(volumes[0][0], [volumes[0][1]], fluid_marker)
    gmsh.model.setPhysicalName(volumes[0][0], fluid_marker, "Fluid")

inlet_marker, outlet_marker, wall_marker, obstacle_marker = 2, 3, 4, 5
inflow, outflow, walls, obstacle = [], [], [], []
if mesh_comm.rank == model_rank:
    boundaries = gmsh.model.getBoundary(volumes, oriented=False)
    for boundary in boundaries:
        center_of_mass = gmsh.model.occ.getCenterOfMass(boundary[0], boundary[1])
        if np.allclose(center_of_mass, [0, H / 2, 0]):
            inflow.append(boundary[1])
        elif np.allclose(center_of_mass, [L, H / 2, 0]):
            outflow.append(boundary[1])
        elif np.allclose(center_of_mass, [L / 2, H, 0]) or np.allclose(center_of_mass, [L / 2, 0, 0]):
            walls.append(boundary[1])
        else:
            obstacle.append(boundary[1])
    gmsh.model.addPhysicalGroup(1, walls, wall_marker)
    gmsh.model.setPhysicalName(1, wall_marker, "Walls")
    gmsh.model.addPhysicalGroup(1, inflow, inlet_marker)
    gmsh.model.setPhysicalName(1, inlet_marker, "Inlet")
    gmsh.model.addPhysicalGroup(1, outflow, outlet_marker)
    gmsh.model.setPhysicalName(1, outlet_marker, "Outlet")
    gmsh.model.addPhysicalGroup(1, obstacle, obstacle_marker)
    gmsh.model.setPhysicalName(1, obstacle_marker, "Obstacle")

res_min = r / 3
if mesh_comm.rank == model_rank:
    distance_field = gmsh.model.mesh.field.add("Distance")
    gmsh.model.mesh.field.setNumbers(distance_field, "EdgesList", obstacle)
    threshold_field = gmsh.model.mesh.field.add("Threshold")
    gmsh.model.mesh.field.setNumber(threshold_field, "IField", distance_field)
    gmsh.model.mesh.field.setNumber(threshold_field, "LcMin", res_min)
    gmsh.model.mesh.field.setNumber(threshold_field, "LcMax", 0.25 * H)
    gmsh.model.mesh.field.setNumber(threshold_field, "DistMin", r)
    gmsh.model.mesh.field.setNumber(threshold_field, "DistMax", 2 * H)
    min_field = gmsh.model.mesh.field.add("Min")
    gmsh.model.mesh.field.setNumbers(min_field, "FieldsList", [threshold_field])
    gmsh.model.mesh.field.setAsBackgroundMesh(min_field)

if mesh_comm.rank == model_rank:
    gmsh.option.setNumber("Mesh.Algorithm", 8)
    gmsh.option.setNumber("Mesh.RecombinationAlgorithm", 2)
    gmsh.option.setNumber("Mesh.RecombineAll", 1)
    gmsh.option.setNumber("Mesh.SubdivisionAlgorithm", 1)
    gmsh.model.mesh.generate(gdim)
    gmsh.model.mesh.setOrder(1)
    gmsh.model.mesh.optimize("Netgen")

mesh, _, ft = gmshio.model_to_mesh(gmsh.model, mesh_comm, model_rank, gdim=gdim)
ft.name = "Facet markers"

t = 0
T = 1                         # Final time
dt = 1 / 1600                 # Time step size
num_steps = int(T / dt)
k = Constant(mesh, PETSc.ScalarType(dt))
mu = Constant(mesh, PETSc.ScalarType(0.001))  # Dynamic viscosity
rho = Constant(mesh, PETSc.ScalarType(1))     # Density


import basix.ufl
v_cg2 = basix.ufl.element("Lagrange", mesh.topology.cell_name(), 2, shape=(mesh.geometry.dim,))
s_cg1 = basix.ufl.element("Lagrange", mesh.topology.cell_name(), 1)
V = functionspace(mesh, v_cg2)
Q = functionspace(mesh, s_cg1)

fdim = mesh.topology.dim - 1

# Define boundary conditions
"""    
class InletVelocity():
    def __init__(self, t):
        self.t = t

    def __call__(self, x):
        values = np.zeros((gdim, x.shape[1]), dtype=PETSc.ScalarType)
        values[0] = 4 * 1.5 * np.sin(self.t * np.pi / 8) * x[1] * (0.41 - x[1]) / (0.41**2)
        return values
"""

U_max = 0.3

class InletVelocity:
    def __call__(self, x):
        values = np.zeros((2, x.shape[1]), dtype=PETSc.ScalarType)
        values[0] = 4 * U_max * x[1] * (0.41 - x[1]) / (0.41**2)
        return values


# Inlet
u_inlet = Function(V)
inlet_velocity = InletVelocity()
u_inlet.interpolate(inlet_velocity)
bcu_inflow = dirichletbc(u_inlet, locate_dofs_topological(V, fdim, ft.find(inlet_marker)))
# Walls
u_nonslip = np.array((0,) * mesh.geometry.dim, dtype=PETSc.ScalarType)
bcu_walls = dirichletbc(u_nonslip, locate_dofs_topological(V, fdim, ft.find(wall_marker)), V)
# Obstacle
bcu_obstacle = dirichletbc(u_nonslip, locate_dofs_topological(V, fdim, ft.find(obstacle_marker)), V)
bcu = [bcu_inflow, bcu_obstacle, bcu_walls]
# Outlet
bcp_outlet = dirichletbc(PETSc.ScalarType(0), locate_dofs_topological(Q, fdim, ft.find(outlet_marker)), Q)
bcp = [bcp_outlet]

u = TrialFunction(V)
v = TestFunction(V)
u_ = Function(V)
u_.name = "u"
u_s = Function(V)
u_n = Function(V)
u_n1 = Function(V)
p = TrialFunction(Q)
q = TestFunction(Q)
p_ = Function(Q)
p_.name = "p"
phi = Function(Q)

# Next, we define the variational formulation for the first step, where we have integrated the diffusion term, as well as the pressure term by parts.
f = Constant(mesh, PETSc.ScalarType((0, 0)))
F1 = rho / k * dot(u - u_n, v) * dx
F1 += inner(dot(1.5 * u_n - 0.5 * u_n1, 0.5 * nabla_grad(u + u_n)), v) * dx
F1 += 0.5 * mu * inner(grad(u + u_n), grad(v)) * dx - dot(p_, div(v)) * dx
F1 += dot(f, v) * dx
a1 = form(lhs(F1))
L1 = form(rhs(F1))
A1 = create_matrix(a1)
b1 = create_vector(L1)

# Next we define the second step
a2 = form(dot(grad(p), grad(q)) * dx)
L2 = form(-rho / k * dot(div(u_s), q) * dx)
A2 = assemble_matrix(a2, bcs=bcp)
A2.assemble()
b2 = create_vector(L2)

# We finally create the last step
a3 = form(rho * dot(u, v) * dx)
L3 = form(rho * dot(u_s, v) * dx - k * dot(nabla_grad(phi), v) * dx)
A3 = assemble_matrix(a3)
A3.assemble()
b3 = create_vector(L3)

# Solver for step 1
solver1 = PETSc.KSP().create(mesh.comm)
solver1.setOperators(A1)
solver1.setType(PETSc.KSP.Type.BCGS)
pc1 = solver1.getPC()
pc1.setType(PETSc.PC.Type.JACOBI)

# Solver for step 2
solver2 = PETSc.KSP().create(mesh.comm)
solver2.setOperators(A2)
solver2.setType(PETSc.KSP.Type.MINRES)
pc2 = solver2.getPC()
pc2.setType(PETSc.PC.Type.HYPRE)
pc2.setHYPREType("boomeramg")

# Solver for step 3
solver3 = PETSc.KSP().create(mesh.comm)
solver3.setOperators(A3)
solver3.setType(PETSc.KSP.Type.CG)
pc3 = solver3.getPC()
pc3.setType(PETSc.PC.Type.SOR)

from pathlib import Path
folder = Path("/home/gerard/Desktop/DFG_Larson/")
folder.mkdir(exist_ok=True, parents=True)
vtx_u = VTXWriter(mesh.comm, folder/"dfg2D-3-u.bp", [u_], engine="BP4")
vtx_p = VTXWriter(mesh.comm, folder/"dfg2D-3-p.bp", [p_], engine="BP4")
vtx_u.write(t)
vtx_p.write(t)


progress = tqdm.autonotebook.tqdm(desc="Solving PDE", total=num_steps)
for i in range(num_steps):
    progress.update(1)
    # Update current time step
    t += dt
    # Update inlet velocity
    #inlet_velocity.t = t
    #u_inlet.interpolate(inlet_velocity)

    # Step 1: Tentative velocity step
    A1.zeroEntries()
    assemble_matrix(A1, a1, bcs=bcu)
    A1.assemble()
    with b1.localForm() as loc:
        loc.set(0)
    assemble_vector(b1, L1)
    apply_lifting(b1, [a1], [bcu])
    b1.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b1, bcu)
    solver1.solve(b1, u_s.vector)
    u_s.x.scatter_forward()

    # Step 2: Pressure corrrection step
    with b2.localForm() as loc:
        loc.set(0)
    assemble_vector(b2, L2)
    apply_lifting(b2, [a2], [bcp])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, bcp)
    solver2.solve(b2, phi.vector)
    phi.x.scatter_forward()

    p_.vector.axpy(1, phi.vector)
    p_.x.scatter_forward()

    # Step 3: Velocity correction step
    with b3.localForm() as loc:
        loc.set(0)
    assemble_vector(b3, L3)
    b3.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    solver3.solve(b3, u_.vector)
    u_.x.scatter_forward()

    # # Write solutions to file
    vtx_u.write(t)
    vtx_p.write(t)

    # Update variable with solution form this time step
    with u_.vector.localForm() as loc_, u_n.vector.localForm() as loc_n, u_n1.vector.localForm() as loc_n1:
        loc_n.copy(loc_n1)
        loc_.copy(loc_n)
vtx_u.close()
vtx_p.close()

The term with sin of t is typically there to smoothen out the transition from a domain with 0 velocity to a domain with the max inlet velocity. You can think of it as a ramp in time.

To me it’s no surprise that, if you start from a domain with fluid at rest (initial velocity equal to zero) and you suddenly throw in a fluid with a very high velocity, then the results at the first few time iterations might be terrible. In other words, if you had a nonlinear solver (which you don’t, because you have the time stepping scheme) that solver may take a lot of iterations to converge, because your initial guess (say, at time step 1, the initial condition) is a terrible approximation of the solution at the current time step. The (somewhat cheap) trick is to add the ramp to help the solver.

Overall, I wouldn’t be too worried if there is a transient in time in which the velocity you get is not very physical. As soon as that transient finishes (assuming it does) you’ll get a decent solution.

1 Like