ufl.log.UFLException: Replacement expressions must have the same shape as what they replace

Trying out the naiver-stokes example with an additional term (-(dot(nabla_grad(u_n)*n, v)ds)(p_n/u_n)) in the momentum equation. But the p_n without the u_n dividing in the this term throws the following error:
Replacement expressions must have the same shape as what they replace.

If I use the whole term including the (p_n/u_n) it throws the error:
Division by non-scalar is undefined

Please what am I doing wrong?

from __future__ import print_function
# import dolfin
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
import sys

Time = 10.0  # final time
num_steps = 5000  # number of time steps
dt = Time / num_steps  # time step size
mu = 1  # kinematic viscosity
rho = 1  # density

# Create mesh and define function spaces
mesh = UnitSquareMesh(16, 16)
V = VectorFunctionSpace(mesh, 'P', 2)

Q = FunctionSpace(mesh, 'P', 1)

# Define boundaries
inflow = 'near(x[0], 0)'
outflow = 'near(x[0], 1)'
walls = 'near(x[1], 0) || near(x[1], 1)'


# Define boundary conditions
# bcu_noslip = DirichletBC(V, Constant((0, 0)), walls)
bcp_inflow = DirichletBC(Q, Constant(25), inflow)
bcp_outflow = DirichletBC(Q, Constant(5), outflow)
# bcu = [bcu_noslip]
bcp = [bcp_inflow, bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_ = Function(V)
p_n = Function(Q)
p_ = Function(Q)

# Define expressions used in variational forms
U = 0.5 * (u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
k = Constant(dt)
mu = Constant(mu)
rho = Constant(rho)
F = PETScVector()

# Define strain-rate tensor
def epsilon(u):
    # return sym(nabla_grad(u))
    return 0.5 * (nabla_grad(u) + nabla_grad(u).T)

# Define stress tensor
def sigma(u, p):
    return 2 * mu * epsilon(u) - p * Identity(len(u))

# grad_u = project(grad(u), V)# Define variational problem for step 1
phi=dot(nabla_grad(u_n)*n, v)*ds
F1 = rho * dot((u - u_) / k, v) * dx + \
     rho * dot(dot(u_, nabla_grad(u_n)), v) * dx \
     + inner(sigma(U, p_n), epsilon(v)) * dx \
     + dot(p_n * n, v) * ds - dot(mu * nabla_grad(U) * n, v) * ds \
     - dot(f, v) * dx -phi -(dot(nabla_grad(u_n)*n, v)*ds)*(p_n/u_n)


a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q)) * dx
L2 = dot(nabla_grad(p_n), nabla_grad(q)) * dx - (1 / k) * div(u_) * q * dx

# Define variational problem for step 3
a3 = dot(u, v) * dx
L3 = dot(u_, v) * dx - k * dot(nabla_grad(p_ - p_n), v) * dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Apply boundary conditions to matrices
# [bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Time-stepping
t = 0
for n in range(num_steps):
    # Update current time
    t += dt

    # Step 1: Tentative velocity step
    b1 = assemble(L1)
    # [bc.apply(b1) for bc in bcu]
    solve(A1, u_.vector(), b1)

    # Step 2: Pressure correction step
    b2 = assemble(L2)
    [bc.apply(b2) for bc in bcp]
    solve(A2, p_.vector(), b2)

    # Step 3: Velocity correction step
    b3 = assemble(L3)
    solve(A3, u_.vector(), b3)

    # Plot solution
    # velocity = plot(u_[0], u_[1])
    velocity = plot(u_)


# Saving results (image) to disk
    if n == 0:
        plt.xlabel("x (length)", fontsize=12, fontweight="bold")
        plt.ylabel("y (width)", fontsize=12, fontweight="bold")
        plt.title(r'Velocity Profile for  $(\partial_n u=\nabla u\cdot \hat{n})$' \
                  , fontsize=14, fontweight="bold")
        img = plt.colorbar(plot(u_), format='%.2f')
        img.ax.set_yticklabels(labels=img.ax.get_yticklabels(), weight='bold', fontsize=10)
        img.set_label(label='Velocity', size=10, weight='bold')
        plt.savefig("/home/incorruptible/Desktop/simulations/vel" + str(n) + ".png", format="PNG")
    else:
        plot(u_)
        plt.savefig("/home/incorruptible/Desktop/simulations/vel" + str(n) + ".png", format="PNG")

    # Compute error
    u_e = Expression(('4*x[1]*(1.0 - x[1])', '0'), degree=2)
    u_e = interpolate(u_e, V)
    error = np.abs(np.array(u_e.vector()) - np.array(u_.vector())).max()
    print('t = %.2f: error = %.3g' % (t, error))
    print('max u:', np.array(u_.vector()).max())
    print('Partial u:%.2f', phi)
    original_stdout = sys.stdout
    with open('velocity.txt', 'w') as f:
        sys.stdout = f
        print(u_)
        sys.stdout = original_stdout
    # Update previous solution
    u_n.assign(u_)
    p_n.assign(p_)
plt.show()

Thanks in advance :pray: