Visualizing a Three-Dimensional Function

Hello dear fenicsx users,
I am trying to implement the 1D Cahn-Hilliard problem using fenicsx 0.7.2.

I replace the rectangle domain with an interval and the code works.
But plotting with pyvista and paraview outputs the solution over the 1D interval x.

I just want to know how to visualise the solution c(x, t) in three dimensions as in matplotlib (see example below).

import matplotlib.pyplot as plt
x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x, y)
Z =  grid.point_data["c"]
plt.contour(X, Y, Z, colors='black')
plt.colorbar()
plt.show


fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')

The MWE of the 1D Cahn-Hilliard problem is shown below:

# ---
# jupyter:
#   jupytext:
#     text_representation:
#       extension: .py
#       format_name: light
#       format_version: '1.5'
#       jupytext_version: 1.13.6
# ---

# # Cahn-Hilliard equation
#
# This example demonstrates the solution of the Cahn-Hilliard equation,
# a nonlinear, time-dependent fourth-order PDE.
#
# - A mixed finite element method
# - The $\theta$-method for time-dependent equations
# - Automatic linearisation
# - Use of the class
#   {py:class}`NonlinearProblem<dolfinx.fem.petsc.NonlinearProblem>`
# - The built-in Newton solver
#   ({py:class}`NewtonSolver<dolfinx.nls.petsc.NewtonSolver>`)
# - Form compiler options
# - Interpolation of functions
# - Visualisation of a running simulation with pyvista
#
# This demo is implemented in {download}`demo_cahn-hilliard.py`.
#
# ## Equation and problem definition
#
# The Cahn-Hilliard equation is a parabolic equation and is typically used
# to model phase separation in binary mixtures.  It involves first-order
# time derivatives, and second- and fourth-order spatial derivatives.  The
# equation reads:
#
# $$
# \begin{align}
# \frac{\partial c}{\partial t} -
#   \nabla \cdot M \left(\nabla\left(\frac{d f}{dc}
#   - \lambda \nabla^{2}c\right)\right) &= 0 \quad {\rm in} \ \Omega, \\
# M\left(\nabla\left(\frac{d f}{d c} -
#   \lambda \nabla^{2}c\right)\right) \cdot n
#   &= 0 \quad {\rm on} \ \partial\Omega, \\
# M \lambda \nabla c \cdot n &= 0 \quad {\rm on} \ \partial\Omega.
# \end{align}
# $$
#
# where $c$ is the unknown field, the function $f$ is usually
# non-convex in $c$ (a fourth-order polynomial is commonly used),
# $n$ is the outward directed boundary normal, and $M$ is a
# scalar parameter.
#
# ### Operator split form
#
# The Cahn-Hilliard equation is a fourth-order equation, so casting it in
# a weak form would result in the presence of second-order spatial
# derivatives, and the problem could not be solved using a standard
# Lagrange finite element basis.  A solution is to rephrase the problem as
# two coupled second-order equations:
#
# $$
# \begin{align}
# \frac{\partial c}{\partial t} - \nabla \cdot M \nabla\mu
#     &= 0 \quad {\rm in} \ \Omega, \\
# \mu -  \frac{d f}{d c} + \lambda \nabla^{2}c &= 0 \quad {\rm in} \ \Omega.
# \end{align}
# $$
#
# The unknown fields are now $c$ and $\mu$. The weak
# (variational) form of the problem reads: find $(c, \mu) \in V
# \times V$ such that
#
# $$
# \begin{align}
# \int_{\Omega} \frac{\partial c}{\partial t} q \, {\rm d} x +
#     \int_{\Omega} M \nabla\mu \cdot \nabla q \, {\rm d} x
#     &= 0 \quad \forall \ q \in V,  \\
# \int_{\Omega} \mu v \, {\rm d} x - \int_{\Omega} \frac{d f}{d c} v \, {\rm d} x
#   - \int_{\Omega} \lambda \nabla c \cdot \nabla v \, {\rm d} x
#    &= 0 \quad \forall \ v \in V.
# \end{align}
# $$
#
# ### Time discretisation
#
# Before being able to solve this problem, the time derivative must be
# dealt with. Apply the $\theta$-method to the mixed weak form of
# the equation:
#
# $$
# \begin{align}
# \int_{\Omega} \frac{c_{n+1} - c_{n}}{dt} q \, {\rm d} x
# + \int_{\Omega} M \nabla \mu_{n+\theta} \cdot \nabla q \, {\rm d} x
#        &= 0 \quad \forall \ q \in V  \\
# \int_{\Omega} \mu_{n+1} v  \, {\rm d} x - \int_{\Omega} \frac{d f_{n+1}}{d c} v  \, {\rm d} x
# - \int_{\Omega} \lambda \nabla c_{n+1} \cdot \nabla v \, {\rm d} x
#        &= 0 \quad \forall \ v \in V
# \end{align}
# $$
#
# where $dt = t_{n+1} - t_{n}$ and $\mu_{n+\theta} =
# (1-\theta) \mu_{n} + \theta \mu_{n+1}$.  The task is: given
# $c_{n}$ and $\mu_{n}$, solve the above equation to find
# $c_{n+1}$ and $\mu_{n+1}$.
#
# ### Demo parameters
#
# The following domains, functions and time stepping parameters are used
# in this demo:
#
# - $\Omega = (0, 1) \times (0, 1)$ (unit square)
# - $f = 100 c^{2} (1-c)^{2}$
# - $\lambda = 1 \times 10^{-2}$
# - $M = 1$
# - $dt = 5 \times 10^{-6}$
# - $\theta = 0.5$
#
# ## Implementation
#
# This demo is implemented in the {download}`demo_cahn-hilliard.py`
# file.

# +
import os

import numpy as np

import ufl
import dolfinx 
from dolfinx import log, plot
from dolfinx.fem import Function, FunctionSpace
from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_unit_square
from dolfinx.nls.petsc import NewtonSolver
from ufl import dx, grad, inner
from dolfinx import fem, io, mesh, plot

from mpi4py import MPI
from petsc4py import PETSc

try:
    import pyvista as pv
    import pyvistaqt as pvqt
    have_pyvista = True
    if pv.OFF_SCREEN:
        pv.start_xvfb(wait=0.5)
except ModuleNotFoundError:
    print("pyvista and pyvistaqt are required to visualise the solution")
    have_pyvista = False

# Save all logging to file
log.set_output_file("log.txt")
# -

# Next, various model parameters are defined:

lmbda = 1.0e-02  # surface parameter
dt = 5.0e-06  # time step
theta = 0.5  # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicholson

# A unit square mesh with 96 cells edges in each direction is created,
# and on this mesh a
# {py:class}`FunctionSpace<dolfinx.fem.FunctionSpace>` `ME` is built
# using a pair of linear Lagrange elements.

#msh = create_unit_square(MPI.COMM_WORLD, 96, 96, CellType.triangle)
msh = mesh.create_interval(MPI.COMM_WORLD, 10, points=(0, 1))
P1 = ufl.FiniteElement("Lagrange", msh.ufl_cell(), 1)
ME = FunctionSpace(msh, P1 * P1)

# Trial and test functions of the space `ME` are now defined:

q, v = ufl.TestFunctions(ME)

# ```{index} split functions
# ```
#
# For the test functions, {py:func}`TestFunctions<function
# ufl.argument.TestFunctions>` (note the 's' at the end) is used to
# define the scalar test functions `q` and `v`. Some mixed objects
# of the {py:class}`Function<dolfinx.fem.function.Function>` class on
# `ME` are defined to represent $u = (c_{n+1}, \mu_{n+1})$ and
# $u0 = (c_{n}, \mu_{n})$, and these are then split into
# sub-functions:

# +
u = Function(ME)  # current solution
u0 = Function(ME)  # solution from previous converged step

# Split mixed functions
c, mu = ufl.split(u)
c0, mu0 = ufl.split(u0)
# -

# The line `c, mu = ufl.split(u)` permits direct access to the
# components of a mixed function. Note that `c` and `mu` are references
# for components of `u`, and not copies.
#
# ```{index} single: interpolating functions; (in Cahn-Hilliard demo)
# ```
#
# The initial conditions are interpolated into a finite element space:

# +
# Zero u
u.x.array[:] = 0.0

# Interpolate initial condition
u.sub(0).interpolate(lambda x: 0.63 + 0.02 * (0.5 - np.random.rand(x.shape[1])))
u.x.scatter_forward()
# -

# The first line creates an object of type `InitialConditions`.  The
# following two lines make `u` and `u0` interpolants of `u_init`
# (since `u` and `u0` are finite element functions, they may not be
# able to represent a given function exactly, but the function can be
# approximated by interpolating it in a finite element space).
#
# ```{index} automatic differentiation
# ```
#
# The chemical potential $df/dc$ is computed using UFL automatic
# differentiation:

# Compute the chemical potential df/dc
c = ufl.variable(c)
f = 100 * c**2 * (1 - c)**2
dfdc = ufl.diff(f, c)

# The first line declares that `c` is a variable that some function can
# be differentiated with respect to. The next line is the function
# $f$ defined in the problem statement, and the third line performs
# the differentiation of `f` with respect to the variable `c`.
#
# It is convenient to introduce an expression for $\mu_{n+\theta}$:

# mu_(n+theta)
mu_mid = (1.0 - theta) * mu0 + theta * mu

# which is then used in the definition of the variational forms:

# Weak statement of the equations
F0 = inner(c, q) * dx - inner(c0, q) * dx + dt * inner(grad(mu_mid), grad(q)) * dx
F1 = inner(mu, v) * dx - inner(dfdc, v) * dx - lmbda * inner(grad(c), grad(v)) * dx
F = F0 + F1

# This is a statement of the time-discrete equations presented as part of
# the problem statement, using UFL syntax.
#
# ```{index} single: Newton solver; (in Cahn-Hilliard demo)
# ```
#
# The DOLFINx Newton solver requires a
# {py:class}`NonlinearProblem<dolfinx.fem.NonlinearProblem>` object to
# solve a system of nonlinear equations

# +
# Create nonlinear problem and Newton solver
problem = NonlinearProblem(F, u)
solver = NewtonSolver(MPI.COMM_WORLD, problem)
solver.convergence_criterion = "incremental"    #residual     #incremental
solver.rtol = 1e-6

# We can customize the linear solver used inside the NewtonSolver by
# modifying the PETSc options
ksp = solver.krylov_solver
opts = PETSc.Options()
option_prefix = ksp.getOptionsPrefix()
opts[f"{option_prefix}ksp_type"] = "preonly"
opts[f"{option_prefix}pc_type"] = "lu"
ksp.setFromOptions()



# The setting of `convergence_criterion` to `"incremental"` specifies
# that the Newton solver should compute a norm of the solution increment
# to check for convergence (the other possibility is to use
# `"residual"`, or to provide a user-defined check). The tolerance for
# convergence is specified by `rtol`.
#
# To run the solver and save the output to a VTK file for later
# visualization, the solver is advanced in time from $t_{n}$ to
# $t_{n+1}$ until a terminal time $T$ is reached:

# +
# Output file
file = XDMFFile(MPI.COMM_WORLD, "demo_ch/output.xdmf", "w")
file.write_mesh(msh)

info = solver.solve(u)
print(info)


import dolfinx
print(f"DOLFINx version: {dolfinx.__version__} based on GIT commit: {dolfinx.git_commit_hash} of https://github.com/FEniCS/dolfinx/")


with dolfinx.io.VTXWriter(msh.comm, "c_paraview.bp", [u.sub(0)], engine="BP4") as vtx:
    vtx.write(0.0)

#with dolfinx.io.VTXWriter(msh.comm, "Temperature.bp", [u.sub(1).collapse()], engine="BP4") as vtx:
with dolfinx.io.VTXWriter(msh.comm, "mu_paraview.bp", [u.sub(1)], engine="BP4") as vtx:
    vtx.write(0.0)

# Step in time
t = 0.0

#  Reduce run time if on test (CI) server
if "CI" in os.environ.keys() or "GITHUB_ACTIONS" in os.environ.keys():
    T = 3 * dt
else:
    T = 50 * dt

# Get the sub-space for c and the corresponding dofs in the mixed space
# vector
V0, dofs = ME.sub(0).collapse()

# Prepare viewer for plotting the solution during the computation
if have_pyvista:
    # Create a VTK 'mesh' with 'nodes' at the function dofs
    topology, cell_types, x = dolfinx.plot.vtk_mesh(V0)
    grid = pv.UnstructuredGrid(topology, cell_types, x)

    # Set output data
    grid.point_data["c"] = u.x.array[dofs].real
    grid.set_active_scalars("c")

    p = pvqt.BackgroundPlotter(title="concentration", auto_update=True)
    p.add_mesh(grid, clim=[0, 1])
    p.view_xy(True)
    p.add_text(f"time: {t}", font_size=12, name="timelabel")

c = u.sub(0)
u0.x.array[:] = u.x.array
while (t < T):
    t += dt
    r = solver.solve(u)
    print(f"Step {int(t/dt)}: num iterations: {r[0]}")
    u0.x.array[:] = u.x.array
    file.write_function(c, t)

    # Update the plot window
    if have_pyvista:
        p.add_text(f"time: {t:.2e}", font_size=12, name="timelabel")
        grid.point_data["c"] = u.x.array[dofs].real
        p.app.processEvents()

file.close()

# Update ghost entries and plot
if have_pyvista:
    u.x.scatter_forward()
    grid.point_data["c"] = u.x.array[dofs].real
    screenshot = None
    if pv.OFF_SCREEN:
        screenshot = "c.png"
    pv.plot(grid, show_edges=True, screenshot=screenshot)


import matplotlib.pyplot as plt
x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x, y)
Z =  grid.point_data["c"]
plt.contour(X, Y, Z, colors='black')
plt.colorbar()
plt.show


fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')

Thank you for your time and your feedback.

You can store your solution at every dof at a particular time in a column and then iteratively do for other time steps as well, successively and then use that file to make contour plots using matplotlib.
See for instance - Dump solution data in .txt file.

1 Like

I’ve isolated the question to your actual query: How to use numpy.meshgrid with a 1D DOLFINx problem:


import matplotlib.pyplot as plt

import numpy as np

import ufl
from dolfinx.fem import Function, FunctionSpace
from dolfinx import mesh

from mpi4py import MPI


dt = 0.1  # time step


msh = mesh.create_interval(MPI.COMM_WORLD, 3, points=(0, 1))
P1 = ufl.FiniteElement("Lagrange", msh.ufl_cell(), 1)
ME = FunctionSpace(msh, P1 * P1)
u = Function(ME)

t = 0.0
T = 40 * dt

V0, dofs = ME.sub(0).collapse()
coords = V0.tabulate_dof_coordinates()[:, 0]
sort_coords = np.argsort(coords)

values = []
times = []
while (t < T):
    t += dt

    u.sub(0).interpolate(lambda x: np.cos(t)*x[0] + np.cos(x[0]))
    times.append(t)
    values.append(u.x.array[dofs][sort_coords])

values = np.asarray(values)

X, Y = np.meshgrid(coords[sort_coords], times)
Z = np.asarray(values)

fig = plt.figure()
ax = plt.axes(projection='3d')
ax.contour3D(X, Y, Z, 50, cmap='binary')
ax.set_xlabel('x')
ax.set_ylabel('t')
ax.set_zlabel('c')
plt.savefig("test.png")

Which illustrates your problem with a mixed function space, where there is a time dependent update on the first component of the mixed space.

test

2 Likes

Thank you dear Violetus for your help.
I’ll have a look at it.

Thank dear Dokken for this nice tutorial (How to use numpy.meshgrid with a 1D DOLFINx problem).

Hello dear Dokken,
Can I ask the meaning of this line of code. I noticed that when I uncomment it, the code works and the output of c is different (-4*1e-52 - 1e-52).

u.sub(0).interpolate(lambda x: np.cos(t)*x[0] + np.cos(x[0]))

In the tutorial https://docs.fenicsproject.org/dolfinx/v0.5.1/python/demos/demo_cahn-hilliard.html, I don’t see where the

lambda x: np.cos(t)*x[0] + np.cos(x[0]))

is defined.

Thank you for your time and feedback.

It is not defined in the demo. This was just to illustrate that you can update your function (with a time-dependency inside the loop) and that the change is reflected in the plot.

1 Like

Thank you, that is enlightening.

If I understand, I can uncomment this line of code.