Hi everyone,
I am trying to extract beam modal shapes using the example ‘Modal analysis of an elastic structure’ example, cantilever_modal.py, at this address :
https://comet-fenics.readthedocs.io/en/latest/demo/modal_analysis_dynamics/cantilever_modal.py.html
I am using Ubuntu 20, python 3.7 and fenics 2018.1.0 (which seems to be the verison used according to intro page.
I don’t encounter code issue, but the mode shape displayed is wrong.
I am expecting a beam bending mode.
Any suggestion why I am not getting the expected results is welcomed.
Regards,
Matt
Here is the code:
from dolfin import *
import numpy as np
import matplotlib.pyplot as pltL, B, H = 20., 0.5, 1.
Nx = 200
Ny = int(B/LNx)+1
Nz = int(H/LNx)+1mesh = BoxMesh(Point(0.,0.,0.),Point(L,B,H), Nx, Ny, Nz)
E, nu = Constant(1e5), Constant(0.)
rho = Constant(1e-3)Lame coefficient for constitutive relation
mu = E/2./(1+nu)
lmbda = Enu/(1+nu)/(1-2nu)def eps(v):
return sym(grad(v))
def sigma(v):
dim = v.geometric_dimension()
return 2.0mueps(v) + lmbda*tr(eps(v))*Identity(dim)V = VectorFunctionSpace(mesh, ‘Lagrange’, degree=1)
u_ = TrialFunction(V)
du = TestFunction(V)def left(x, on_boundary):
return near(x[0],0.)bc = DirichletBC(V, Constant((0.,0.,0.)), left)
k_form = inner(sigma(du),eps(u_))*dx
l_form = Constant(1.)*u_[0]*dx
K = PETScMatrix()
b = PETScVector()
assemble_system(k_form, l_form, bc, A_tensor=K, b_tensor=b)m_form = rho*dot(du,u_)*dx
M = PETScMatrix()
assemble(m_form, tensor=M)eigensolver = SLEPcEigenSolver(K, M)
eigensolver.parameters[‘problem_type’] = ‘gen_hermitian’
eigensolver.parameters[‘spectral_transform’] = ‘shift-and-invert’
eigensolver.parameters[‘spectral_shift’] = 0.N_eig = 6 # number of eigenvalues
print(“Computing {} first eigenvalues…”.format(N_eig))
eigensolver.solve(N_eig)from scipy.optimize import root
from math import cos, cosh
falpha = lambda x: cos(x)cosh(x)+1
alpha = lambda n: root(falpha, (2n+1)*pi/2.)[‘x’][0]Set up file for exporting results
file_results = XDMFFile(“modal_analysis.xdmf”)
file_results.parameters[“flush_output”] = True
file_results.parameters[“functions_share_mesh”] = TrueExtraction
for i in range(N_eig):
# Extract eigenpair
r, c, rx, cx = eigensolver.get_eigenpair(i)freq_3D = sqrt(r)/2/pi
Initialize function and assign eigenvector
eigenmode = Function(V,name="Eigenvector "+str(i))
eigenmode.vector()[:] = rxplot(eigenmode)
plt.show()