Hi guys,
Can anyone tell me how to compute and export mode shapes (D(x,y,z)) and normalized mass (D^TMD) and normalized stiffness (D^TKD) matrices of a Free-Free beam (or any object with no boundary conditions) from FENICS.
I am currently using the following example code
from dolfin import *
import numpy as np
L, B, H = 1.0, 0.02, 0.02
point0 = Point(-0.4,0.05,1.02)
Nx = 200
Ny = int(B/L*Nx)+1
Nz = int(H/L*Nx)+1
mesh = BoxMesh(point0,Point(point0[0]+L,point0[1]+B,point0[2]+H), Nx, Ny, Nz)
E, nu = Constant(1e5), Constant(0.)
rho = Constant(1e-3)
# E, nu = 1e5, 0.0
# rho = 1e-3
# Lame coefficient for constitutive relation
mu = E/2./(1+nu)
lmbda = E*nu/(1+nu)/(1-2*nu)
def eps(v):
return sym(grad(v))
def sigma(v):
dim = v.geometric_dimension()
return 2.0*mu*eps(v) + lmbda*tr(eps(v))*Identity(dim)
# Standard FunctionSpace is defined and boundary conditions correspond to a
# fully clamped support at :math:`x=0`::
V = VectorFunctionSpace(mesh, 'Lagrange', degree=1)
u_ = TrialFunction(V)
du = TestFunction(V)
def left(x, on_boundary):
return near(x[0],0.)
bc = DirichletBC(V, Constant((0.,0.,0.)), left)
# The system stiffness matrix :math:`[K]` and mass matrix :math:`[M]` are
# respectively obtained from assembling the corresponding variational forms::
k_form = inner(sigma(du),eps(u_))*dx
l_form = Constant(1.)*u_[0]*dx
K = PETScMatrix()
b = PETScVector()
assemble_system(k_form, l_form, bc, A_tensor=K, b_tensor=b)
m_form = rho*dot(du,u_)*dx
M = PETScMatrix()
assemble(m_form, tensor=M)
# Matrices :math:`[K]` and :math:`[M]` are first defined as PETSc Matrix and
# forms are assembled into it to ensure that they have the right type.
# Note that boundary conditions have been applied to the stiffness matrix using
# ``assemble_system`` so as to preserve symmetry (a dummy ``l_form`` and right-hand side
# vector have been introduced to call this function).
#
#
# Modal dynamic analysis consists in solving the following generalized
# eigenvalue problem :math:`[K]\{U\}=\lambda[M]\{U\}` where the eigenvalue
# is related to the eigenfrequency :math:`\lambda=\omega^2`. This problem
# can be solved using the ``SLEPcEigenSolver``. ::
eigensolver = SLEPcEigenSolver(K, M)
eigensolver.parameters['problem_type'] = 'gen_hermitian'
eigensolver.parameters['spectral_transform'] = 'shift-and-invert'
eigensolver.parameters['spectral_shift'] = 0.
N_eig = 6 # number of eigenvalues
print("Computing {} first eigenvalues...".format(N_eig))
eigensolver.solve(N_eig)
# Exact solution computation
from scipy.optimize import root
from math import cos, cosh
falpha = lambda x: cos(x)*cosh(x)+1
alpha = lambda n: root(falpha, (2*n+1)*pi/2.)['x'][0]
# Set up file for exporting results
file_results = XDMFFile("modal_analysis.xdmf")
file_results.parameters["flush_output"] = True
file_results.parameters["functions_share_mesh"] = True
# Extraction
normal_M = np.zeros(N_eig+2)
normal_K = np.zeros(N_eig+2)
lamba = np.zeros(N_eig+2)
Modes = []
for i in range(N_eig):
# Extract eigenpair
r, c, rx, cx = eigensolver.get_eigenpair(i)
# 3D eigenfrequency
freq_3D = sqrt(r)/2/pi
lamba[i+2] = r
# Beam eigenfrequency
if i % 2 == 0: # exact solution should correspond to weak axis bending
I_bend = H*B**3/12.
else: #exact solution should correspond to strong axis bending
I_bend = B*H**3/12.
freq_beam = alpha(i/2)**2*sqrt(E*I_bend/(rho*B*H*L**4))/(2*pi)
print(f"Solid FE: {freq_beam} [Hz]")
# Initialize function and assign eigenvector
eigenmode = Function(V,name="Eigenvector "+str(i))
eigenmode.vector()[:] = rx
Modes.append(rx[:])
normal_M[i+2] = np.dot(rx[:],M*rx[:])
normal_K[i+2] = np.dot(rx[:],K*rx[:])
Thank you