I am trying to couple NS equation and CH equation, I have some problems, here are my code and error message, I hope you can help me solve this problem.
import random
from numpy.ma import tanh
from fenics import *
def left(c_):
return (rho_eq_ox - rho_int_ox) / c_ox * c_ + rho_int_ox
def mid(c_):
return (rho_eq_met - rho_eq_ox) / (c_met - c_ox) * (c_ - c_ox) + rho_eq_ox
def right(c_):
return (rho_eq_met - rho_int_met) / (c_met - 1) * (c_ - c_met) + rho_eq_met
class InitialConditions(UserExpression):
def eval(self, values, x):
x_ = x[0]
y_ = x[1]
random.seed(x_)
rx = 2 * random.random() - 1
values[0] = 0.5 * (1 + tanh(2 / wint * (y_ - L - 0.5e-4 * L * rx)))
values[1] = 0.0
values[2] = (0.0, 0.0)
values[3] = 0.0
def value_shape(self):
return 4,
# Sub domain for Periodic boundary condition
class PeriodicBoundaryX(SubDomain):
def inside(self, x, on_boundary):
return DOLFIN_EPS > x[0] > (- DOLFIN_EPS) and on_boundary
def map(self, x, y):
y[0] = x[0] - L
y[1] = x[1]
# Class for interfacing with the Newton solver
class CahnHilliardEquation(NonlinearProblem):
def __init__(self, a, L):
NonlinearProblem.__init__(self)
self.L = L
self.a = a
def F(self, b, x):
assemble(self.L, tensor=b)
def J(self, A, x):
assemble(self.a, tensor=A)
def rho(c_inp):
return conditional(lt(c_inp, c_ox), left(c_inp), conditional(lt(c_inp, c_met), mid(c_inp), right(c_inp)))
L = 0.176
wint = L / 16
rho_int_ox = 8.24783e3
rho_int_met = 6.96642e3
rho_eq_ox = 7.97994e3
rho_eq_met = 9.01478e3
c_ox = 1.87512e-3
c_met = 6.16085e-1
nx = 192
ny = 384
Vm = 1e-5
R = 8.31446
T = 3000
w_ref = 1e-9
DU = 1.55E-12
DO = 2.99e-9
DZ = DU
DF = DU
M_ref = Vm / (R * T) * (DU + DZ + DO + DF)
M = wint / w_ref * M_ref
gama = 0.3854
A0 = 12 * gama / (c_met - c_ox) ** 4 / wint
dt = 0.02
Episino = 3 * wint * gama / 2 / (c_met - c_ox) ** 2
coef = Episino
yita = 10
g = (0.0, 9.80665)
mesh = RectangleMesh(Point(0, 0), Point(L, 2 * L), nx, ny)
P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
P2 = VectorElement("Lagrange", mesh.ufl_cell(), 2)
ME = FunctionSpace(mesh, P1 * P1 * P2 * P1) # c mu [v0,v1],p
d_c_mu_u_p = TrialFunction(ME)
fai, pot, v, q = TestFunctions(ME)
c_mu_u_p = Function(ME) # current solution
c_mu_u_p_0 = Function(ME) # solution from previous converged step
dc, dmu, du, dp = split(d_c_mu_u_p)
c, mu, u, p = split(c_mu_u_p)
c0, mu0, u0, p0 = split(c_mu_u_p_0)
c_mu_init = InitialConditions(degree=1)
c_mu_u_p.interpolate(c_mu_init)
c_mu_u_p_0.interpolate(c_mu_init)
# Compute the chemical potential df/dc
c = variable(c)
f = A0 * (c - c_ox) ** 2 * (c - c_met) ** 2
df_dc = diff(f, c)
L0 = c * fai * dx - c0 * fai * dx + dt * dot(dot(u, grad(c)), fai) * dx + dt * M * dot(grad(mu), grad(fai)) * dx
L1 = mu * pot * dx - df_dc * pot * dx - coef * dot(grad(c), grad(pot)) * dx
L2 = dot(u, v) * dx - \
dot(u0, v) * dx + \
dt * dot(grad(u) * u, v) * dx + \
dt / rho_int_ox * dot(grad(p), v) * dx + \
yita * dt / rho_int_ox * dot(grad(u), grad(v)) * dx + \
dt / rho_int_ox * dot(c * grad(mu), v) * dx + \
dt / rho_int_ox * dot(rho(c) * g, v) * dx
L3 = div(u) * q*dx
L = L0 + L1 + L2 + L3
a = derivative(L, c_mu_u_p, d_c_mu_u_p)
problem = CahnHilliardEquation(a, L)
solver = NewtonSolver()
solver.parameters["linear_solver"] = "lu"
solver.parameters["convergence_criterion"] = "incremental"
solver.parameters["relative_tolerance"] = 1e-6
t = 0.0
solver.solve(problem, c_mu_u_p.vector())
Here is the error message:
Traceback (most recent call last):
File "/home/wangyao/PycharmProjects/hello_word/main.py", line 114, in <module>
fai, pot, v, q = TestFunctions(ME)
ValueError: not enough values to unpack (expected 4, got 2)
Thank you very much!
The governing equation is as follows:
I believe the following is the simplest code:
from fenics import *
L = 0.176
nx = 192
ny = 384
mesh = RectangleMesh(Point(0, 0), Point(L, 2 * L), nx, ny)
P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
P2 = VectorElement("Lagrange", mesh.ufl_cell(), 2)
ME = FunctionSpace(mesh, P1 * P1 * P2 * P1) # c mu [v0,v1],p
d_c_mu_u_p = TrialFunction(ME)
fai, pot, v, q = TestFunctions(ME)
c_mu_u_p = Function(ME) # current solution
c_mu_u_p_0 = Function(ME) # solution from previous converged step
dc, dmu, du, dp = split(d_c_mu_u_p)
c, mu, u, p = split(c_mu_u_p)
c0, mu0, u0, p0 = split(c_mu_u_p_0)