Cannot get fourth-order PDE to be satisfied (minimal working example)

Hello,
Following up on this previous post, I am trying to solve a fourth-order PDE. I constructed this minimal example in a unit square \Omega for you:

\nabla^2 [\partial_i (z \partial_i z)] = f

with BCs z = z_0 and n^i \partial_i z = 0 on \partial \Omega. I considered a case where I know the exact solution, z = (x^4+y^4)/48, and constructed f and the BCs accordingly.

How can I compute \nabla^2 [\partial_i (z \partial_i z)] and verify that it is equal to f for all mesh points in \Omega?

In the minimal working example below, I solve the problem by introducing the auxiliary fields \omega_i \equiv \partial_i z , \mu = \partial_i (z \omega_i), \rho_i \equiv \partial_i \mu and \tau \equiv \partial_i \mu_i. I should have \tau = f in \Omega, but there are some odd deviations at the boundary, here is \tau - f:

Here is the code:

from fenics import *
from mshr import *
import ufl as ufl
from dolfin import *

L = 1.0
h = 1.0
function_space_degree = 4

i, j, k, l = ufl.indices( 4 )


xdmffile_check = XDMFFile( "solution/check.xdmf" )
xdmffile_check.parameters.update( {"functions_share_mesh": True, "rewrite_function_mesh": False} )

mesh = Mesh()
mesh = RectangleMesh( Point( 0, 0 ), Point( L, h ), 20, 20 )
r_mesh = mesh.hmin()

mvc = MeshValueCollection( "size_t", mesh, mesh.topology().dim() )
cf = dolfin.cpp.mesh.MeshFunctionSizet( mesh, mvc )

mvc = MeshValueCollection( "size_t", mesh, mesh.topology().dim() - 1 )
sf = dolfin.cpp.mesh.MeshFunctionSizet( mesh, mvc )

boundary = 'on_boundary'

dx = Measure( "dx", domain=mesh, subdomain_data=cf )
ds = Measure( "ds", domain=mesh, subdomain_data=sf )

n = FacetNormal( mesh )

P_z = FiniteElement( 'P', triangle, function_space_degree )
P_omega = VectorElement( 'P', triangle, function_space_degree )
P_mu = FiniteElement( 'P', triangle, function_space_degree )
P_rho = VectorElement( 'P', triangle, function_space_degree )
P_tau = FiniteElement( 'P', triangle, function_space_degree )
element = MixedElement( [P_z, P_omega, P_mu, P_rho, P_tau] )
Q = FunctionSpace( mesh, element )

Q_z = Q.sub( 0 ).collapse()
Q_omega = Q.sub( 1 ).collapse()
Q_mu = Q.sub( 2 ).collapse()
Q_rho = Q.sub( 3 ).collapse()
Q_tau = Q.sub( 4 ).collapse()

assigner = FunctionAssigner( Q, [Q_z, Q_omega, Q_mu, Q_rho, Q_tau] )


class z_exact_expression( UserExpression ):
    def eval(self, values, x):
        values[0] = (x[0] ** 4 + x[1] ** 4) / 48.0

    def value_shape(self):
        return (1,)


class omega_exact_expression( UserExpression ):
    def eval(self, values, x):
        values[0] = (x[0] ** 3) / 12.0
        values[1] = (x[1] ** 3) / 12.0

    def value_shape(self):
        return (2,)


class mu_exact_expression( UserExpression ):
    def eval(self, values, x):
        values[0] = (7 * x[0] ** 6 + 3 * x[0] ** 4 * x[1] ** 2 + 3 * x[0] ** 2 * x[1] ** 4 + 7 * x[1] ** 6) / 576.0

    def value_shape(self):
        return (1,)


class rho_exact_expression( UserExpression ):
    def eval(self, values, x):
        values[0] = x[0] * (7 * x[0] ** 4 + 2 * x[0] ** 2 * x[1] ** 2 + x[1] ** 4) / 96.0
        values[1] = x[1] * (x[0] ** 4 + 2 * x[0] ** 2 * x[1] ** 2 + 7 * x[1] ** 4) / 96.0

    def value_shape(self):
        return (2,)


class f_exact_expression( UserExpression ):
    def eval(self, values, x):
        # values[0] = -16 * (np.cos( 4 * x[0] ) + np.cos( 4 * x[1] ) + np.sin( 2 * x[0] ) * np.sin( 2 * x[1] ))
        values[0] = 1 / 8.0 * (3 * x[0] ** 4 + x[0] ** 2 * x[1] ** 2 + 3 * x[1] ** 4)

    def value_shape(self):
        return (1,)


# Define variational problem
psi = Function( Q )
nu_z, nu_omega, nu_mu, nu_rho, nu_tau = TestFunctions( Q )

z_exact = Function( Q_z )
omega_exact = Function( Q_omega )
mu_exact = Function( Q_mu )
rho_exact = Function( Q_rho )
tau_exact = Function( Q_tau )

f = Function( Q_z )
J_Q = TrialFunction( Q )
z, omega, mu, rho, tau = split( psi )

z_exact.interpolate( z_exact_expression( element=Q_z.ufl_element() ) )
omega_exact.interpolate( omega_exact_expression( element=Q_omega.ufl_element() ) )
mu_exact.interpolate( mu_exact_expression( element=Q_mu.ufl_element() ) )
rho_exact.interpolate( rho_exact_expression( element=Q_rho.ufl_element() ) )
tau_exact.interpolate( f_exact_expression( element=Q_tau.ufl_element() ) )
f.interpolate( f_exact_expression( element=Q_z.ufl_element() ) )

z_profile = Expression( '(pow(x[0], 4) + pow(x[1], 4)) / 48.0', element=Q.sub( 0 ).ufl_element() )
bc_z = DirichletBC( Q.sub( 0 ), z_profile, boundary )

assigner.assign( psi, [f, omega_exact, mu_exact, rho_exact, tau_exact] )

F_z = ((mu.dx( j )) * (nu_z.dx( j )) + f * nu_z) * dx

F_omega = (z * ((nu_omega[i]).dx( i )) + omega[i] * nu_omega[i]) * dx \
          - n[i] * z * nu_omega[i] * ds

F_mu = (z * omega[i] * (nu_mu.dx( i )) + mu * nu_mu) * dx \
       - n[i] * z * omega_exact[i] * nu_mu * ds

F_rho = (mu * ((nu_rho[i]).dx( i )) + rho[i] * nu_rho[i]) * dx \
        - n[i] * mu * nu_rho[i] * ds

F_tau = (tau * nu_tau + rho[i] * (nu_tau.dx( i ))) * dx \
        - n[i] * rho[i] * nu_tau * ds

F = F_omega + F_z + F_mu + F_rho + F_tau
bcs = [bc_z]

J = derivative( F, psi, J_Q )
problem = NonlinearVariationalProblem( F, psi, bcs, J )
solver = NonlinearVariationalSolver( problem )

solver.solve()

z_out, omega_out, mu_out, rho_out, tau_out = psi.split( deepcopy=True )
xdmffile_check.write( project( tau_out - f, Q_z ), 0 )

Please run it with python3 solve.py.

Thank you! :slight_smile:

This does not look anomalous to me.

The point of FEM is not to satisfy the PDE on mesh points. The PDE is satisfied in a weighted integral sense… So discrepancies in the residual on the order 10E-5 are really not so strange. You might check if they decrease under mesh refinement.

By the way, why are you introducing a mixed space with 4 different spaces for this? You need only 2 for 4th order problems (the primal z and the auxiliary \mu). \omega seems unnecessary, and adds a bunch of first-order terms to your formulation, which FEM typically struggles with. Reproduction of your \tau field can be done in post-processing.