I am trying to simulate crack propagation in a single-edge notched plate subjected to tension in a hydrogen environment using the phase-field approach in FEniCS. However, despite applying incremental displacement, the crack is not propagating in my simulation.
Observed Issues:
- The phase field (ϕ) remains unchanged throughout the simulation.
- Load-displacement curve does not show failure.
- History variable H updates, but crack evolution is not happening.
Possible Causes:
- Incorrect phase-field equation formulation?
- Issue with hydrogen-dependent fracture energy?
- Need finer mesh resolution or fracture length scale l?
Would appreciate any suggestions! Should I modify something or debug in a specific way?
Please check my code, Thanks in advance!
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
# Geometry and mesh parameters
length, height = 1.0, 1.0
mesh = RectangleMesh(Point(0, 0), Point(length, height), 100, 100) # Instead of 50, 50
# Marking initial crack (Horizontal crack at y=0.5, from x=0 to x=0.5)
class InitialCrack(SubDomain):
def inside(self, x, on_boundary):
return near(x[1], 0.5) and (0.0 <= x[0] <= 0.5)
crack = InitialCrack()
# Material properties
E, nu = 210e3, 0.3
Gc0, l = 2, 0.015
D = 0.0127
kappa = 1e-8
chi = 0.89 # Hydrogen damage coefficient
# Elasticity parameters
mu = E / (2*(1 + nu))
lmbda = E*nu / ((1 + nu)*(1 - 2*nu))
# Mesh and function spaces
V_u = VectorFunctionSpace(mesh, 'CG', 2)
V_phi = FunctionSpace(mesh, 'CG', 1)
V_c = FunctionSpace(mesh, 'CG', 1)
# Functions
u, phi, C = Function(V_u), Function(V_phi), Function(V_c)
v, dphi, dc = TestFunction(V_u), TestFunction(V_phi), TestFunction(V_c)
# Boundary conditions
class TopBoundary(SubDomain):
def inside(self, x, on_boundary):
return near(x[1], height)
class BottomBoundary(SubDomain):
def inside(self, x, on_boundary):
return near(x[1], 0.0)
class CrackBoundary(SubDomain):
def inside(self, x, on_boundary):
return near(x[1], 0.5) and (0.0 <= x[0] <= 0.5)
top_boundary = TopBoundary()
bottom_boundary = BottomBoundary()
crack_boundary = CrackBoundary()
bc_u_bottom = DirichletBC(V_u, Constant((0.0, 0.0)), bottom_boundary)
bc_phi = DirichletBC(V_phi, Constant(1.0), crack_boundary)
bc_C = DirichletBC(V_c, Constant(1.0), 'on_boundary')
# Initial conditions
C0 = 5.0e-7 # 0.5 ppm in FEniCS units
phi_old = interpolate(Constant(1.0), V_phi)
C_old = interpolate(Constant(C0), V_c)
H = Function(V_phi) # Initialize H with the same function space as phi
# Define hydrogen-dependent fracture energy
Gc = project(Gc0 * (1 - chi * (C_old / (C_old + 0.03))), V_phi)
# Define variational forms
def eps(u):
return sym(grad(u))
def sigma(u, phi):
return ((1 - phi)**2 + kappa) * (lmbda * tr(eps(u)) * Identity(2) + 2 * mu * eps(u))
# Time-stepping parameters
num_steps = 1000
dt = 1000 # Time step in seconds
max_disp = 0.05 # Maximum displacement to track full crack propagation
t = 0
disp_increment = 5e-6 # Correct per the paper
# Output files
vtkfile_phi = File('phi.pvd')
vtkfile_C = File('C.pvd')
vtkfile_u = File('u.pvd')
# Tracking Load vs Displacement
load_displacement = []
dx = Measure("dx", domain=mesh) # Ensure dx is correctly defined
for step in range(num_steps):
t += dt
disp = step * disp_increment # Incremental displacement
bc_u_top = DirichletBC(V_u.sub(1), Constant(disp), top_boundary)
bcs_u = [bc_u_bottom, bc_u_top]
# Step 1: Solve elasticity problem
elasticity_eq = inner(sigma(u, phi_old), eps(v))*dx
solve(elasticity_eq == 0, u, bcs_u,
J=derivative(elasticity_eq, u),
solver_parameters={"newton_solver": {"linear_solver": "mumps"}})
# Step 2: Compute history variable
psi = 0.5 * inner(sigma(u, phi_old), eps(u))
H_new = project(psi, V_phi)
H.assign(project(conditional(ge(H_new, H), H_new, H), V_phi)) # Ensure crack irreversibility
#H.assign(max(H, H_new)) # Ensure crack irreversibility
print(f"Step: {step}, Max H: {H.vector().max()}")
# Step 3: Update Gc with latest C values
theta = C_old / (C_old + 0.03) # Hydrogen concentration factor
Gc = Gc0 * (1 - chi * theta)
# Step 4: Solve phase-field equation
phi_eq = ((Gc/l)*phi*dphi + Gc*l*dot(grad(phi), grad(dphi))
- 2*(1 - phi)*H*dphi)*dx
solve(phi_eq == 0, phi, bc_phi,
J=derivative(phi_eq, phi),
solver_parameters={"newton_solver": {"linear_solver": "mumps"}})
# Step 5: Compute hydrostatic stress AFTER phase-field update
sigma_H = project(tr(sigma(u, phi)) / 3, V_c)
# Step 6: Solve hydrogen diffusion equation
C_eq = ((C - C_old)/dt)*dc*dx + dot(D*grad(C), grad(dc))*dx \
- (D*C/(8.314*300))*2e-6*dot(grad(sigma_H), grad(dc))*dx
solve(C_eq == 0, C, bc_C,
J=derivative(C_eq, C),
solver_parameters={"newton_solver": {"linear_solver": "mumps"}})
# Step 7: Update solutions
phi_old.assign(phi)
C_old.assign(C)
# Step 8: Track Load vs Displacement
load = assemble(inner(sigma(u, phi), eps(u)) * dx)
load_displacement.append((disp, load))
# Step 9: Save results
vtkfile_phi << (phi, t)
vtkfile_C << (C, t)
vtkfile_u << (u, t)
print(f"Step: {step}, Disp: {disp}, Load: {load}")
# Plot Load vs Displacement
plt.figure()
disp_vals, load_vals = zip(*load_displacement)
plt.plot(disp_vals, load_vals, '-o')
plt.xlabel("Displacement (mm)")
plt.ylabel("Load (N)")
plt.title("Load vs Displacement Curve")
plt.grid(True)
plt.show()
print("Simulation completed successfully.")