Thank you for response. The error is: when I run the code in python, this error appears as you can see in the attached screenshot.
the packages that have been imported in the code:
This is the whole code:
‘’'Python
“”"
This code is made available under a BSD 3-clause license. See LICENSE for further information.
This script is a minimal working example of how to perform gradient-based topology optimisation
based on a homogenisation interpolation and GCMMA with FEniCS. This exaple minimises the temporal
average variance of the spatial average temperature at the heat source boundary by placing phase
change material (PCM) and highly thermally conductive material (HCM).
To run this you need
If you do not have a linux computer available a virtual machine with Linux can be used.
I have had good experiences with WMware and Oracle VM Virtualbox.
By Mark Christensen
28-07-23
Disclaimer:
The author does not guarantee that the code is free from errors.
Furthermore, the author shall not be liable in any event caused by the use of the program.
“”"
#####################################################
LIBRARIES
#####################################################
from fenics import *
from fenics_adjoint import * # Note: It is important that fenics_adjoint is called after fenics
import matplotlib.pyplot as plt
import numpy as np
import statistics as stat
from mma import gcmmasub,subsolv,kktcheck,asymp,concheck,raaupdate # Import MMA functions
set_log_level(LogLevel.ERROR) # Only print message if error message
#####################################################
PREPROCESSING
#####################################################
----- PHYSICAL MODEL DATA -----
Material constants
khcm = 10 # Thermal conductivity og HCM [W/(mK)]
cphcm = 1 # Specific heat capacity of HCM [J/(Kkg)]
rhohcm = 1 # Mass density density of HCM [kg/m³]
kpcm = 1e-3khcm # Thermal conductivity og PCM [W/(mK)]
cppcm = 1 # Specific heat capacity of PCM [J/(K*kg)]
rhopcm = 1 # Mass density density of PCM [kg/m³]
Tmelt = 0.5 # Melting temperature of PCM [K]
dTmelt = 0.5 # Melting temperture range of PCM [K]
Lheat = 10 # Latent heat of fusion [J/kg]
Thermal data
qheat = 1 # Heat production rate in electronics [W]
w = 1 # Ocsilation frequency of heat source [Hz]
hconv = 5 # Het atransfer coefficient [W/(m²*K)]
Tinf = 0 # Temperature of surroundings [K]
Tinitial = 0 # Initial temperature [K]
Temporal data
tfin = 20 # Final time [s]
num_steps = 500 # Number of time steps
dt = tfin/num_steps # Time step size [s]
Finite element data
nx = ny = 100 # Number of element in x and y direction
lx = ly = 1 # Dimension of the 2D heatsink [m]
lz = 1 # Out of plane thickness of the 2D heatsink [m]
degree_phys = 1 # Element order for physical problem
----- OPTIMIZATION ELEMENT DATA -----
Loop
niter = 300 # Max number of optimisation iterations
tol_opt = 1E-3 # Convergence tolerance, based on the absolute error
Problem parameters
volfrac = 0.3 # Maximum allowable volume fraction used in the optimisation
Filter data
r = 0.01 # Length scale for the Helmholzt PDE filterer
----- DEFINING DOMAIN AND FUNCTION SPACES -----
Create mesh
mesh = RectangleMesh(Point(-lx/2, -ly/2), Point(lx/2, ly/2), nx, ny, “crossed”)
Function space
V0 = FunctionSpace(mesh, “DG”, 0) # Discontinous function space
Vphys = FunctionSpace(mesh, “CG”, degree_phys) # Continous function space
----- BOUNDARY CONDITIONS -----
Define the Heat source and convection boundaries were the Neumann BC are a aplied.
class HeatSourceBoundary(SubDomain):
def inside(self, x, on_boundary):
tol_bc = 1E-14
return on_boundary and near(x[1], -ly/2, tol_bc) and x[0]+lx/4>=-tol_bc and x[0]-lx/4<=tol_bc
HS_boundary = HeatSourceBoundary()
Applying Neuman boundary condition to simulate the heat loss due to convection
class ConvectionBoundary(SubDomain):
def inside(self, x, on_boundary):
tol_bc = 1E-14
return on_boundary and near(x[1], ly/2, tol_bc)
C_boundary = ConvectionBoundary()
Marking the facets (boundaries) that coresspond to HeatSourceBoundary and ConvectionBoundary
boundaries = MeshFunction(‘size_t’, mesh, mesh.topology().dim()-1) # store all facets in array
HS_boundary.mark(boundaries, 1) # Mark all facest that are on the HS_boundary with 1
C_boundary.mark(boundaries, 2) # Mark all facest that are on the c_boundary with 2
Denfine the line intrgrals
dsHS = ds(subdomain_id=1, subdomain_data=boundaries)
dsC = ds(subdomain_id=2, subdomain_data=boundaries)
Define volume and area for later use
voltot = assemble(Constant(lz)*dx(domain=mesh)) # Compute total volume Of design domain
AHS = assemble(Constant(lz)*dsHS(domain=mesh)) # Compute crossectionl area of heat source
#####################################################
FUNCTIONS
#####################################################
Apparent heat capacity method
def cppcmmod(T_,cppcm_, Lheat_):
“”"
Incoorporates the latent heat of fusion into the heat capacity with
the aparent heat capacity method with heaviside step functions.
This function assumes no change in spefic heat capacity due to phase change.
Inputs: T_ is the temperture field, cppcm_ is the heat capacity without
phase change, Lheat_ is the latent heat of fusion.
Outputs: Field of the modified heat capacity
"""
k_H = 25 # Steepness of Heviside step function
return cppcm_ + Lheat_ / (dTmelt) * \
(
1 / (1 + exp(-2 * k_H * (T_ - (Tmelt - dTmelt/2))))
- (1 / (1 + exp(-2 * k_H * (T_ - (Tmelt + dTmelt/2)))))
)
def PDEfilter(u_, r_, mesh_):
“”"
Applies ering to a field by solving af PDEfilter type PDE
based on the work of B.S. Lazarov and O. Sigmund DOI: 10.1002/nme.3072
Inputs: u_ is the unfiltered field, r_ is the characteristic length
Outputs: filtered field u_tilde
"""
Vold = u_.function_space() # Saving function space from u_
VCG = FunctionSpace(mesh_, "CG", 1) # Defining continous function space
# Defining variational problem
u_tilde = TrialFunction(VCG)
vf = TestFunction(VCG)
# HELMHOLTZ-TYPE PDE (u_ is projected to a continouos function space)
F = u_tilde*vf*dx + r_**2*dot(grad(u_tilde), grad(vf))*dx - project(u_, VCG)*vf*dx(mesh_)
# a: unknowns, L: knowns
a, L = lhs(F), rhs(F)
u_temp = Function(VCG)
u_tilde = Function(Vold)
# Compute solution and project onto inital function space
solve(a == L, u_temp)
u_tilde.assign(project(u_temp, Vold))
return u_tilde
def forward(rho_tilde_):
“”"
Solves the forward problem (solving PDE) using homogenisation
Inputs: rho_tilde is the filtered material density variable field
Outputs: Variables used for computing the objective function
"""
# ----- DEFINING PROBLEM -----
# Material interpolations
def rhocppcmphys(rho_,T_):
return (rhohcm*cphcm)*(rho_)+(1-rho_)*(rhopcm*cppcmmod(T_,cppcm, Lheat))
def kphys(rho_):
a = 1-(1-rho_)**0.5
return 1/(a/khcm + (1-a)/(kpcm*(1-a)+khcm*a))
# Defining the flucturating heat source
qelec = Expression("qheat/(AHS)*(1+sin(2*DOLFIN_PI*w*t))",
qheat=qheat, AHS=AHS, lz=lz, w=w, t=0, degree=0)
# Define initial values
T_ini = Constant(Tinitial)
T_n = interpolate(T_ini, Vphys)
# Defining the trial and test functions
T = TrialFunction(Vphys)
v = TestFunction(Vphys)
# Weak form rho_k=0 -> PCM, rho_k = 1 -> HCM
F = rhocppcmphys(rho_tilde_,T_n)*(T-T_n)/dt*v*dx \
+ kphys(rho_tilde_)*dot(grad(T),grad(v))*dx \
- qelec*v*dsHS \
+ hconv*(T-Tinf)*v*dsC
# a: unknowns, L: knowns
a, L = lhs(F), rhs(F)
# ------ SOLVING THE PROBLEM -----
# Initialise the field for the Temperature
T = Function(Vphys)
# Set initial condistions
T_n.assign(interpolate(T_ini, Vphys))
T.assign(interpolate(T_ini, Vphys))
t = 0
qelec.t = t
# Save the average temperture at the heat source
T_elec_array = [assemble(T*dsHS)/AHS]
# ------ Solving Physics -----
for timestep in range(num_steps):
t += float(dt) # Update time
qelec.t = t # Update heat source
solve(a == L, T) # Solve problem for current time step with lieaner solver
T_n.assign(T) # Update previous temperature
T_elec_array.append(assemble(T*dsHS)/AHS)
# Compute the variance of the average temperture at the heat source over time
T_time_mean = stat.mean(T_elec_array) # Average over time
T_var = []
for timesteps in range(len(T_elec_array)):
T_var.append((T_elec_array[timesteps] - T_time_mean)**2)
return T_var
def Optimization(rho_,rho_tilde_, rf_f0_, rf_h_,f0_history_,Mnd_history_):
“”"
Performs gradient based topology optimazation using the Methode of moving assymptotes
based on a MMA and GCMMA script by Krister Svanberg (https://people.kth.se/~krille/mmagcmma.pdf)
which is translated to Python Arjeen Deetman (GitHub - arjendeetman/GCMMA-MMA-Python: Python implementation of the Method of Moving Asymptotes (MMA))
Inputs: rho is the density variable field, rho_tilde is the filtered density variable field,
rf_f0 is the reduced functional for f0, rf_h is the reduced functional for h, f0_history is
a empty list for storing the history of f0, and Mnd_history is a empty list for storing the
history of h.
Outputs: rho and rho_tilde at the final design and f0_history, Mnd_history
"""
with pyadjoint.stop_annotating() as _: # Stop saving opterations with dolfin-adjoint
# ------ INITIALASING LOOP -----
# Preallocate rho and rho_tilde for each iteration
rho_k = rho_
rho_tilde_k = rho_tilde_
# Initialize GCMMA parameters
m = 1 # Number of constraints
n = rho.vector()[:].size # Number of design variables
xval = rho.vector()[:].reshape(-1, 1) # Initial design variables
epsimin = 0.0000001
eeen = np.ones((n,1))
eeem = np.ones((m,1))
zeron = np.zeros((n,1))
zerom = np.zeros((m,1))
xold1 = xval.copy()
xold2 = xval.copy()
xmin = 0*eeen.copy()
xmax = 1*eeen.copy()
low = xmin.copy()
upp = xmax.copy()
c = 1000*eeem
d = eeem.copy()
a0 = 1
a = zerom.copy()
raa0 = 0.01
raa = 0.01*eeem
raa0eps = 0.000001
raaeps = 0.000001*eeem
outeriter = 0
# Initilize preliminary design
f0_k = rf_f0_(rho_k)
h_k = rf_h_(rho_k)
Mnd = assemble(4*rho_tilde_k*(1-rho_tilde_k)*dx)/(lx*ly)*100
# Calculate Sensitivities
df0drho = Function(V0, name="Object function Sensitivity")
dhdrho = Function(V0, name="Constraint function Sensitivity")
df0drho.assign(rf_f0_.derivative())
dhdrho.assign(rf_h_.derivative())
# Scaling functions and storing them in matrices for the MMA solver
xval = rho_k.vector()[:].reshape(-1, 1) # Saving design variable in xval
scale = np.abs(f0_k/10)
f0val = 1 + f0_k/scale # Scaling f0 at xval
df0dx = df0drho.vector()[:].reshape(-1, 1)/scale # nx1 matrix of sensitivities of f0 at xval
fval = h_k # Array of constraint functions at xval
dfdx = dhdrho.vector()[:].reshape(m, n)
# Initialize the outer iteration and convergence counter
outit = 0
cc = 0
# ----- OPTIMIZATION LOOP -----
while (outit < niter):
outit += 1
outeriter += 1
if outit > 1: # update prev values for convergence check
f0_kprev = f0_k
Mndprev = Mnd
# The parameters low, upp, raa0 and raa are calculated:
low,upp,raa0,raa= \
asymp(outeriter,n,xval,xold1,xold2,xmin,xmax,low,upp,raa0,raa,raa0eps,raaeps,df0dx,dfdx)
# The MMA subproblem is solved at the point xval:
xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,f0app,fapp= \
gcmmasub(m,n,iter,epsimin,xval,xmin,xmax,low,upp,raa0,raa,f0val,df0dx,fval,dfdx,a0,a,c,d)
# Evaluate the functionals with the new deisgn
rho_k.vector()[:] = xmma.flatten() # Overwrite rho with the new rho from the MMA solver
f0_knew = rf_f0_(rho_k)
h_knew = rf_h_(rho_k)
f0valnew = np.array([1 + f0_knew/scale]) # Scaling f0 at xval
fvalnew = np.array([h_knew])
# It is checked if the approximations are conservative:
conserv = concheck(m,epsimin,f0app,f0valnew,fapp,fvalnew)
# While the approximations are non-conservative (conserv=0), repeated inner iterations are made:
innerit = 0
if conserv == 0:
while conserv == 0 and innerit < 2:
innerit += 1
# New values on the parameters raa0 and raa are calculated:
raa0,raa = raaupdate(xmma,xval,xmin,xmax,low,upp,f0valnew,fvalnew,f0app,fapp,raa0, \
raa,raa0eps,raaeps,epsimin)
# The GCMMA subproblem is solved with these new raa0 and raa:
xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,f0app,fapp = gcmmasub(m,n,iter,epsimin,xval,xmin, \
xmax,low,upp,raa0,raa,f0val,df0dx,fval,dfdx,a0,a,c,d)
# Evaluate the functionals with the new deisgn
rho_k.vector()[:] = xmma.flatten() # Overwrite rho with the new rho from the MMA solver
f0_knew = rf_f0_(rho_k)
h_knew = rf_h_(rho_k)
f0valnew = np.array([1 + f0_knew/scale]) # Scaling f0 at xval
fvalnew = np.array([h_knew])
# It is checked if the approximations have become conservative:
conserv = concheck(m,epsimin,f0app,f0valnew,fapp,fvalnew)
# Updat vectors:
xold2 = xold1.copy()
xold1 = xval.copy()
xval = xmma.copy()
# Re-calculate function values and gradients of the objective and constraints functions
rho_k.vector()[:] = xmma.flatten() # Overwrite rho with the new rho from the MMA solver
rho_tilde_k.assign(PDEfilter(rho_k, r, mesh))
f0_k = rf_f0_(rho_k)
h_k = rf_h_(rho_k)
df0drho.assign(rf_f0_.derivative())
dhdrho.assign(rf_h_.derivative())
# Scaling functions and storing them in matrices for the MMA solver
f0val = 1 + f0_k/scale # Scaling f0 at xval
df0dx = df0drho.vector()[:].reshape(-1, 1)/scale # nx1 matrix of sensitivities of f0 at xval
fval = h_k # Array of constraint functions at xval
dfdx = dhdrho.vector()[:].reshape(m, n)
# Store f0
f0_history_.append(f0_k) # Save f0 in f0 history
Mnd = assemble(4*rho_tilde_k*(1-rho_tilde_k)*dx)/(lx*ly)*100
Mnd_history_.append(Mnd)
# Chect for convergence
if outit > 1:
# Check if converged
f0ichange = abs((f0_k-f0_kprev)/(f0_k))
Mndchange = abs((Mnd-Mndprev)/(Mnd) )
if f0ichange <= tol_opt and Mndchange <= tol_opt:
cc += 1
if cc > 3:
print("Tolerance Reached!!")
break
else:
cc = 0
print("Iteration " + str(outeriter) + "." + str(innerit) + ": f0 = " + str(f'{f0_k:.3f}') + ", Mnd = " + str(f'{Mnd:.2f}')+", f0ichange = " + str("{:.2e}".format(f0ichange))+", Mndchange = " + str("{:.2e}".format(Mndchange)))
# ----- PLOTS While Solving -----
plt.figure(1) # plot of current design
plt.clf()
plt.colorbar(plot(rho_tilde_k, cmap="Greys", vmin=0, vmax=1))
plt.xlim([-lx/2, lx/2])
plt.ylim([-ly/2, ly/2])
plt.title("rho_tilde at iter " + str(outit)+": f0 = "+ str(f'{f0_history_[-1]:.2f}')+ ", Mnd = " + str(f'{Mnd_history[-1]:.2f}'))
plt.pause(0.05)
plt.figure(2) # plot of f0 and Mnd history
plt.clf()
plt.plot(np.arange(1, len(f0_history_)+1)-1, f0_history_, color="red")
ax = plt.gca()
plt.xlabel("Number of iterations")
plt.ylabel("Objective", color="red")
plt.tick_params(axis="y", which="both", labelcolor="red")
plt.title("Convergence history")
ax2 = ax.twinx()
ax2.plot(np.arange(1, len(Mnd_history_)+1)-1, Mnd_history_, color="blue")
ax2.set_ylabel("Measure of non-discreteness", color="blue")
ax2.tick_params(axis="y", which="both", labelcolor="blue")
plt.pause(0.05)
return rho_k,rho_tilde_k, f0_history_, Mnd_history_
if name == ‘main’:
# ----- INITIALIZE DENSITIES -----
rho = interpolate(Constant(volfrac),V0) # Define initial design
rho_tilde = PDEfilter(rho, r, mesh) # Apply filter
T_var = forward(rho_tilde) # Solve forward problem (physical model)
# Objective and Constraint function
h = assemble(rho_tilde*lz*dx)/(volfrac*voltot) - 1
f0 = sum(T_var)/len(T_var)
# Reduced functionals
control = Control(rho)
rf_f0 = ReducedFunctional(f0, control)
rf_h = ReducedFunctional(h, control)
# Initiate f0 and Mnd historry lists
f0_history = []
Mnd_history = []
rho,rho_tilde, f0_history, Mnd_history = Optimization(rho, rho_tilde, rf_f0, rf_h, (f0_history), (Mnd_history))
# ----- PLOTS -----
plt.figure(1) #The filal design
plt.clf()
plt.colorbar(plot(rho_tilde, cmap="Greys", vmin=0, vmax=1))
plt.xlim([-lx/2, lx/2])
plt.ylim([-ly/2, ly/2])
plt.title("rho_tilde at iter " + str(iter)+": f0 = "+ str(f'{f0_history[-1]:.2f}')+ ", Mnd = "+ str(f'{Mnd_history[-1]:.2f}'))
plt.figure(2) #The f0 and Mnd history
plt.clf()
plt.plot(np.arange(1, len(f0_history)+1)-1, f0_history, color="red")
ax = plt.gca()
plt.xlabel("Number of iterations")
plt.ylabel("Objective", color="red")
plt.tick_params(axis="y", which="both", labelcolor="red")
plt.title("Convergence history")
ax2 = ax.twinx()
ax2.plot(np.arange(1, len(Mnd_history)+1)-1, Mnd_history, color="blue")
ax2.set_ylabel("Measure of non-discreteness", color="blue")
ax2.tick_params(axis="y", which="both", labelcolor="blue")
plt.show()
‘’’