H(div) function spaces in Navier-Stokes problem

I’m having trouble using a “BDM” function space for velocity, but it doesn’t work.

from __future__ import print_function
from fenics import *
import numpy as np

T = 10.0           # final time
num_steps = 500    # number of time steps
dt = T / num_steps # time step size
mu = 1             # kinematic viscosity
rho = 1            # density

# Create mesh and define function spaces
mesh = UnitSquareMesh(16, 16)

V = VectorFunctionSpace(mesh, 'BDM', 2, dim = 2)
Q = FunctionSpace(mesh, 'DG', 0)

# BDM = VectorElement("BDM", mesh.ufl_cell(), 2)
# DG = VectorElement("DG", mesh.ufl_cell(), 1)
# W = MixedElement([BDM, DG])

# Vcomplex = FunctionSpace(mesh, W)

# Define boundaries
inflow  = 'near(x[0], 0)'
outflow = 'near(x[0], 1)'
walls   = 'near(x[1], 0) || near(x[1], 1)'

# Define boundary conditions
bcu_noslip  = DirichletBC(V, Constant((0, 0)), walls)
bcp_inflow  = DirichletBC(Q, Constant(8), inflow)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_noslip]
bcp = [bcp_inflow, bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_  = Function(V)
p_n = Function(Q)
p_  = Function(Q)

# Define expressions used in variational forms
U   = 0.5*(u_n + u)
n   = FacetNormal(mesh)
f   = Constant((0, 0))
k   = Constant(dt)
mu  = Constant(mu)
rho = Constant(rho)

# Define strain-rate tensor
def epsilon(u):
    return sym(nabla_grad(u))

# Define stress tensor
def sigma(u, p):
    return 2*mu*epsilon(u) - p*Identity(len(u))

# Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx + \
     rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \
   + inner(sigma(U, p_n), epsilon(v))*dx \
   + dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
   - dot(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q))*dx
L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx

# Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Time-stepping
t = 0
for n in range(num_steps):

    # Update current time
    t += dt

    # Step 1: Tentative velocity step
    b1 = assemble(L1)
    [bc.apply(b1) for bc in bcu]
    solve(A1, u_.vector(), b1)

    # Step 2: Pressure correction step
    b2 = assemble(L2)
    [bc.apply(b2) for bc in bcp]
    solve(A2, p_.vector(), b2)

    # Step 3: Velocity correction step
    b3 = assemble(L3)
    solve(A3, u_.vector(), b3)

    # Plot solution
    plot(u_)

    # Compute error
    u_e = Expression(('4*x[1]*(1.0 - x[1])', '0'), degree=2)
    u_e = interpolate(u_e, V)
    error = np.abs(u_e.vector().array() - u_.vector().array()).max()
    print('t = %.2f: error = %.3g' % (t, error))
    print('max u:', u_.vector().array().max())

    # Update previous solution
    u_n.assign(u_)
    p_n.assign(p_)

# Hold plot
interactive()

BTW, the 99 percent of the code is copied directly from fenics python tutorial code. So the only part which could be causing the problem is introducing the spaces.

Hi.

BDM is a vector space by definition, hence VectorFunctionSpace(mesh, 'BDM', 2) is a tensor space. You can define instead

V= FunctionSpace(mesh, 'BDM', 2)

This however is not guaranteed to give you a reasonable answer because of the Hdiv space. Also, the code API is a bit outdated. If you are new to FEniCS, I strongly suggest to start from the new FEniCSx-tutorial. There is also a Divergence conforming DG for Navier-Stokes here, where they use the Raviart-Thomas family.

Cheers.

5 Likes

Thank you so much :pray:
just a quick question. I have reviewed the literature on the most recent and robust methods for solving unsteady NS. I think one of them is by using H(div) spaces. Do you know a better method?
I would really appreciate your answer