Problem with "Did you combine test or trial functions from different spaces?"

Hello everyone, I am calculating the lift and drag coefficients in the code for the N-S 2D equations but it throws me the error that I leave attached, also I also leave the code that I am using. Thank you very much in advance.

This is my code:

from __future__ import print_function
from fenics import *
from mshr import *
import numpy as np
from dolfin import *
import numpy as np
import matplotlib
import matplotlib.pyplot as plt

T = 5.0            # final time
num_steps = 5000   # number of time steps
dt = T / num_steps # time step size
mu = 0.001         # dynamic viscosity
rho = 1            # density

# Create mesh
channel = Rectangle(Point(0, 0), Point(2.2, 0.41))
cylinder = Circle(Point(0.2, 0.2), 0.05)
domain = channel - cylinder
mesh = generate_mesh(domain, 64)

# Define function spaces
V = VectorFunctionSpace(mesh, 'P', degree=2)
Q = FunctionSpace(mesh, 'P', 1)

# Define boundaries
inflow   = 'near(x[0], 0)'
outflow  = 'near(x[0], 2.2)'
walls    = 'near(x[1], 0) || near(x[1], 0.41)'
cylinder = 'on_boundary && x[0]>0.1 && x[0]<0.3 && x[1]>0.1 && x[1]<0.3'

# Define inflow profile
inflow_profile = ('4.0*1.5*x[1]*(0.41 - x[1]) / pow(0.41, 2)', '0')


# Define boundary conditions
bcu_inflow = DirichletBC(V, Expression(inflow_profile, degree=2), inflow)
bcu_walls = DirichletBC(V, Constant((0, 0)), walls)
bcu_cylinder = DirichletBC(V, Constant((0, 0)), cylinder)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_inflow, bcu_walls, bcu_cylinder]
bcp = [bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_  = Function(V)
p_n = Function(Q)
p_  = Function(Q)

# Define expressions used in variational forms
U  = 0.5*(u_n + u)
n  = FacetNormal(mesh)
f  = Constant((0, 0))
k  = Constant(dt)
mu = Constant(mu)
rho = Constant(rho)

# Define symmetric gradient
def epsilon(u):
    return sym(nabla_grad(u))

# Define stress tensor
def sigma(u, p):
    return 2*mu*epsilon(u) - p*Identity(len(u))

# Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx \
   + rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \
   + inner(sigma(U, p_n), epsilon(v))*dx \
   + dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
   - dot(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q))*dx
L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx

# Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Create XDMF files for visualization output
xdmffile_u = XDMFFile('navier_stokes_cylinder/velocity.xdmf')
xdmffile_p = XDMFFile('navier_stokes_cylinder/pressure.xdmf')

# Create time series (for use in reaction_system.py)
timeseries_u = TimeSeries('navier_stokes_cylinder/velocity_series')
timeseries_p = TimeSeries('navier_stokes_cylinder/pressure_series')

# Save mesh to file (for use in reaction_system.py)
File('navier_stokes_cylinder/cylinder.xml.gz') << mesh

# Create progress bar
# progress = Progress('Time-stepping')
progress = Progress('Time-stepping', num_steps)
# set_log_level(PROGRESS)

# Time-stepping
t = 0
for n in range(num_steps):

    # Update current time
    t += dt

    # Step 1: Tentative velocity step
    b1 = assemble(L1)
    [bc.apply(b1) for bc in bcu]
    solve(A1, u_.vector(), b1, 'bicgstab', 'hypre_amg')

    # Step 2: Pressure correction step
    b2 = assemble(L2)
    [bc.apply(b2) for bc in bcp]
    solve(A2, p_.vector(), b2, 'bicgstab', 'hypre_amg')

    # Step 3: Velocity correction step
    b3 = assemble(L3)
    solve(A3, u_.vector(), b3, 'cg', 'sor')

    # Plot solution
    # plot(u_, title='Velocity')
    # plot(p_, title='Pressure')

    # Save solution to file (XDMF/HDF5)
    xdmffile_u.write(u_, t)
    xdmffile_p.write(p_, t)

    # Save nodal values to file
    timeseries_u.store(u_.vector(), t)
    timeseries_p.store(p_.vector(), t)

    # Update previous solution
    u_n.assign(u_)
    p_n.assign(p_)

    # Update progress bar
    # progress.update(t / T)
    set_log_level(LogLevel.PROGRESS)
    progress += 1
    set_log_level(LogLevel.ERROR)
    print('u max:', u_.vector().get_local().max())

#drag and lift
subdomains = MeshFunction("size_t", mesh, mesh.topology().dim() - 1, 0)
ds = Measure("ds", domain=mesh, subdomain_data=subdomains)# Surface integration
theta = 0.0
"""L = inner(force, v) * dx
rad2 = x[0]**2 + x[1]**2

u_outer_boun = Constant((U_0*cos(theta), U_0*sin(theta)))
bc_outer_boun = DirichletBC(W.sub(0), u_outer_boun, subdomains, mark["outer_boun"])"""
# Viscous stress
# sym returns the symmetric part of a matrix
stress_visc = 2*sym(grad(u))

# Total stress
#stress1 = sigma(u,p)#-p*Identity(2) + stress_visc

# Second deviatoric (viscous) stress invariant
J_2 = 0.5*tr(stress_visc*stress_visc)

#Export tensor field
o = TensorFunctionSpace(mesh, "P", degree = 1)     # Order 1, as it is a deriv. of V (order 2)
stress = project(sigma(u,p), o)
stress_file = File("stress.pvd")
stress_file << stress

# Imposed flow direction:
n_flow = Constant((cos(theta), sin(theta)))
n_flow = project(n_flow, Q.sub(0).collapse())

# Perpendicular to n_flow:
t_flow = Constant((sin(theta), -cos(theta)))
t_flow = project(t_flow, Q.sub(0).collapse())

# Compute traction vector
traction = dot(stress, n)

# Integrate decomposed traction to get total F_drag and F_lift
F_drag = assemble(dot(traction, n_flow) * ds(mark["inner"]))
F_lift = assemble(dot(traction, t_flow) * ds(mark["inner"]))

# Hold plot
# interactive()

This is the error:

    Found different Arguments with same number and part.
    Did you combine test or trial functions from different spaces?
    The Arguments found are:
      v_0
      v_1
      v_1
    Traceback (most recent call last):
      File "naviercilindro.py", line 188, in <module>
        stress = project(sigma(u,p), o)

    ufl.log.UFLException: Found different Arguments with same number and part.
    Did you combine test or trial functions from different spaces?
    The Arguments found are:
      v_0
      v_1
      v_1

Please reduce the problem to a minimal working example. Remove the time loop and all code that isnt needed to reproduce the error. Follow the guidelines Read before posting: How do I get my question answered?

1 Like