When the thermal conductivity is a constant, the general heat conduction problem is solved as follows. If the thermal conductivity is a function of temperature, for example, kappa = T**1.5, how should the corresponding variational equation be modified?
from mpi4py import MPI
from dolfinx.io import gmshio
from dolfinx import io
from ufl import (TestFunction, TrialFunction, dot, dx, grad)
from dolfinx.fem import (functionspace, dirichletbc, locate_dofs_topological)
from dolfinx.fem.petsc import LinearProblem
mesh, cell_markers, facet_markers = gmshio.read_from_msh("f.msh", MPI.COMM_WORLD, gdim=3)
q_v = 0.01 #power
kappa = 0.002 #thermal conductivity
VT = functionspace(mesh, ("CG", 1))
Tf = 1000.0
facets = facet_markers.find(6)
fdim = mesh.topology.dim - 1
dofs = locate_dofs_topological(VT, fdim, facets)
bcT = dirichletbc(Tf, dofs, VT)
T_ = TestFunction(VT)
dT = TrialFunction(VT)
aT = dot(grad(dT), grad(T_)) * dx
LT = q_v/kappa * T_ * dx
problem = LinearProblem(aT, LT, bcs=[bcT], petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
Delta_Tf = problem.solve()