I also found adios4dolfinx.write_function_on_input_mesh
. By the way, I have another quick question:
In a solid mechanics problem, I defined a DG-0 function to describe material anisotropy for each cell. Can this DG-0 function be used to define the strain energy function for solving the displacement field of the solid, which is defined as a CG-1 function ?
I tried it and it works.
from dolfinx import log, default_scalar_type
from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.nls.petsc import NewtonSolver
import numpy as np
import ufl
from mpi4py import MPI
from dolfinx import fem, mesh, plot
L = 20.0
domain = mesh.create_box(MPI.COMM_WORLD, [[0.0, 0.0, 0.0], [L, 1, 1]], [
40, 10, 10], mesh.CellType.hexahedron)
V = fem.functionspace(domain, ("Lagrange", 1, (domain.geometry.dim, )))
Q = fem.functionspace(domain, ("DG", 0, (domain.geometry.dim, )))
f0 = fem.Function(Q, name="f0")
s0 = fem.Function(Q, name="s0")
f0.interpolate(lambda x: np.vstack(
(np.zeros_like(x[0]), np.zeros_like(x[0])+1, np.zeros_like(x[0]))))
def left(x):
return np.isclose(x[0], 0)
def right(x):
return np.isclose(x[0], L)
fdim = domain.topology.dim - 1
left_facets = mesh.locate_entities_boundary(domain, fdim, left)
right_facets = mesh.locate_entities_boundary(domain, fdim, right)
marked_facets = np.hstack([left_facets, right_facets])
marked_values = np.hstack(
[np.full_like(left_facets, 1), np.full_like(right_facets, 2)])
sorted_facets = np.argsort(marked_facets)
facet_tag = mesh.meshtags(
domain, fdim, marked_facets[sorted_facets], marked_values[sorted_facets])
u_bc = np.array((0,) * domain.geometry.dim, dtype=default_scalar_type)
left_dofs = fem.locate_dofs_topological(V, facet_tag.dim, facet_tag.find(1))
bcs = [fem.dirichletbc(u_bc, left_dofs, V)]
B = fem.Constant(domain, default_scalar_type((0, 0, 0)))
T = fem.Constant(domain, default_scalar_type((0, 0, 0)))
v = ufl.TestFunction(V)
u = fem.Function(V)
d = len(u)
I = ufl.variable(ufl.Identity(d))
F = ufl.variable(I + ufl.grad(u))
C = ufl.variable(F.T * F)
Ic = ufl.variable(ufl.tr(C))
J = ufl.variable(ufl.det(F))
I_4f = ufl.inner(f0, C*f0)
E = default_scalar_type(1.0e4)
nu = default_scalar_type(0.3)
mu = fem.Constant(domain, E / (2 * (1 + nu)))
lmbda = fem.Constant(domain, E * nu / ((1 + nu) * (1 - 2 * nu)))
psi = (mu / 2) * (Ic - 3) - mu * ufl.ln(J) + (lmbda / 2) * \
(ufl.ln(J))**3 + 20000*(ufl.exp((I_4f-1.0)*(I_4f-1.0))-1.0)
P = ufl.diff(psi, F)
metadata = {"quadrature_degree": 4}
ds = ufl.Measure('ds', domain=domain,
subdomain_data=facet_tag, metadata=metadata)
dx = ufl.Measure("dx", domain=domain, metadata=metadata)
F = ufl.inner(ufl.grad(v), P) * dx - ufl.inner(v, B) * \
dx - ufl.inner(v, T) * ds(2)
problem = NonlinearProblem(F, u, bcs)
solver = NewtonSolver(domain.comm, problem)
solver.atol = 1e-8
solver.rtol = 1e-8
solver.convergence_criterion = "incremental"
log.set_log_level(log.LogLevel.INFO)
tval0 = -1.5
for n in range(1, 3):
T.value[2] = n * tval0
num_its, converged = solver.solve(u)
assert (converged)
u.x.scatter_forward()