I’m using the latest version of dolfinx and I wonder how to define matrix to compute integral of w^{T}Ay, here, y and w are trial and test functions, I use this method to define matrix
from dolfinx import fem
import ufl
import numpy as np
from ufl import as_ufl
def create_coefficient_matrices(p_f, u_f, T_f, domain):
# Define constants
R = fem.Constant(domain, np.float64(287.05)) # Specific gas constant for air
c_v = fem.Constant(domain, np.float64(718.0)) # Specific heat at constant volume
c_p = fem.Constant(domain, np.float64(1.0054))
# Define basic thermodynamic expressions directly
rho_f_expr = p_f / (as_ufl(R) * T_f)
v_expr = as_ufl(R) * T_f / p_f
e_expr = as_ufl(c_v) * T_f
h_expr = e_expr + p_f * v_expr
k_expr=0.5 * (u_f[0] * u_f[0] + u_f[1] * u_f[1])
u_squared = 0.5 * (u_f[0] * u_f[0] + u_f[1] * u_f[1])
e_tot_expr = e_expr + u_squared
# Define thermodynamic coefficients directly
beta_T_expr = 1.0 / p_f
alpha_p_expr = 1.0 / T_f
e1_p = rho_f_expr *beta_T_expr*(h_expr + k_expr )-alpha_p_expr*T_f
e2_p = e1_p + as_ufl(fem.Constant(domain, np.float64(1)))
e3_p = rho_f_expr * (h_expr+k_expr)
e4_p=-rho_f_expr *alpha_p_expr*(h_expr+k_expr) + rho_f_expr*c_p
# Create coefficient matrices using ufl.as_matrix
get_A0 = ufl.as_matrix([
[rho_f_expr * beta_T_expr, fem.Constant(domain, np.float64(0)), fem.Constant(domain, np.float64(0)),
-rho_f_expr * alpha_p_expr],
[rho_f_expr * beta_T_expr * u_f[0], rho_f_expr, fem.Constant(domain, np.float64(0)),
-rho_f_expr * alpha_p_expr * u_f[0]],
[rho_f_expr * beta_T_expr * u_f[1], fem.Constant(domain, np.float64(0)), rho_f_expr,
-rho_f_expr * alpha_p_expr * u_f[1]],
[e1_p , rho_f_expr * u_f[0], rho_f_expr * u_f[1],
rho_f_expr * c_v]
])
but after debugging, I find out that the return of this method, which is 4*4, doesn’t contain any attributes like .x or .value, and I am using this in my weak form integration, I think this may cause the process very slow, so how to properly do this in dolfinx, could you please recommend some docs? thank you very much