Hi,

I’m trying to extend the Stokes model to Brinkman model:

\mu\nabla ^2\mathbf{u}-\nabla p=\mathbf{f}

→

\mu\nabla ^2\mathbf{u}-\nabla p-\kappa\mathbf{u}=\mathbf{f}

The variational formulation of Brinkman model should be:

\int_{\Omega}{\mu\nabla \mathbf{u}\cdot \nabla \mathbf{v}}-\int_{\Omega}{p\left( \nabla \cdot \mathbf{v} \right)}-\int_{\Omega}{\kappa\mathbf{u}\cdot \mathbf{v}}=\int_{\Omega}{\mathbf{f}\cdot \mathbf{v}}+\int_{\partial \Omega _N}{\mathbf{g}\cdot \mathbf{v}}

where \mathbf{g}=\nabla \mathbf{u}\cdot \mathbf{n}+p\mathbf{n}

The new term should be added is -\int_{\Omega}{\kappa \mathbf{u}\cdot \mathbf{v}}.

The fenics expression should be `-k * inner(u, v)`

I’m not familiar with HDG, so what should I modify the Leopart/Geopart library for this?

such as:

`https://bitbucket.org/nate-sime/leopart/src/master/source/FormsStokes.py#lines-138`

`https://bitbucket.org/nate-sime/leopart/src/253d42a713d6c35c479c99ea1c64b6121d67b577/source/cpp/stokesstaticcondensation.cpp#lines-204`

Thanks for your help!

Bin