Hi everyone!
I’m trying to use minimeze function of dolfin adjoint to solve this problem
\min_{g} J=\int_{\Omega}u(T)²d\Omega, where T is the flast step and g is a Dirichlet boundary condition, and u is the solution of Navier-Stokes equation.
I idid this example first Dirichlet BC control of the Stokes equations and does it. But when I try in this problem doesn’t work.
My code is (I use the Chorin’s method)
from fenics import *
from mshr import *
import numpy as np
from dolfin import *
from dolfin_adjoint import *
import matplotlib.pyplot as plt
import math
T = 90
num_steps = int(T)*25
dtn = T / num_steps
mu = 0.009 #dynamic viscosity
y_h= 11
rho = 1 # density
U0=1 #initial horizontal velocity
Re=70 #Reynold's number
D=1
mu=rho*U0*D/Re
Rer=round(Re,2)
channel = Rectangle(Point(-10.0, -y_h), Point(20.0, y_h))
cylinder = Circle(Point(0.0, 0.1), 0.5,25)
domain = channel - cylinder
mesh = generate_mesh(domain, 30)
Q = FunctionSpace(mesh, 'CG', 1)
V = VectorFunctionSpace(mesh, 'CG', 1)
# Define boundaries
inflow= 'near(x[0], -10)'
outflow= 'near(x[0], 20)'
walls= 'near(x[1], '+str(-y_h)+') || near(x[1], '+str(y_h)+' ) '
cylinder= 'on_boundary && x[0]>-0.55 && x[0]<0.55 && x[1]>-0.45 && x[1]<0.65'
# Define boundary conditions
inflow_profile = ('0.95', '0.31')
g = Function(V, name="Control")
# Define boundary conditions
bcu_inflow = DirichletBC(V, Expression(inflow_profile, degree=2), inflow)
bcu_walls = DirichletBC(V, Constant((0, 0)), walls)
bcu_cylinder = DirichletBC(V, g, cylinder)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_inflow, bcu_walls, bcu_cylinder]
bcp = [bcp_outflow]
#Define trial and test functions
u= TrialFunction(V)
v= TestFunction(V)
p=TrialFunction(Q)
q= TestFunction(Q)
# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_ = Function(V)
p_n = Function(Q)
p_ = Function(Q)
u_aux = Function(V)
# Define expressions used in variational forms
U = 0.5*(u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
ix= Constant((1,0))
k = Constant(dtn)
mu = Constant(mu)
# Define symmetric gradient
def epsilon(u):
return sym(nabla_grad(u))
# Define stress tensor
def sigma(u, p):
return 2*mu*epsilon(u) - p*Identity(len(u))
# Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx \
+ rho*dot(dot(u_n, nabla_grad(u_n)), v)*dx \
+ inner(sigma(U, p_n), epsilon(v))*dx \
+ dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- dot(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)
# Define variational problem for step 2
a2 = dot(nabla_grad(p), nabla_grad(q))*dx
L2 = dot(nabla_grad(p_n), nabla_grad(q))*dx - (1/k)*div(u_)*q*dx
# Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx
# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)
# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]
for n_steps in range(600):
# Step 1: Tentative velocity step
b1 = assemble(L1)
[bc.apply(b1) for bc in bcu]
solve(A1, u_.vector(), b1, 'bicgstab', 'hypre_amg')
# Step 2: Pressure correction step
b2 = assemble(L2)
[bc.apply(b2) for bc in bcp]
solve(A2, p_.vector(), b2, 'bicgstab', 'hypre_amg')
# Step 3: Velocity correction step
b3 = assemble(L3)
solve(A3, u_.vector(), b3, 'cg', 'sor')
# Plot solution
plot(u_, title='Velocity')
# Update previous solution
u_n.assign(u_)
p_n.assign(p_)
J = assemble(inner(u_, u_)*dx)
Jhat = ReducedFunctional(J, Control(g))
g_opt = minimize(Jhat, options={"disp": True})
When I try to do this, I get “Solving linear variational problem” infinite times for hours.
Any suggestion?
Thank you!