Hi there,
I am trying to reproduce the Poisson equation with periodic BC given in the example in
However, when I am trying to extract the node points in the mesh and the solution value at every node point, there is a mismatch between the number of node points and the number of solution data. In fact, number of solution data is exactly double than the number of node points. Could you please help me to understand why this is happening and how I can extract the solutions at the node points? Below I copy my code and its out put.
####################################
My code is:
####################################
This demo program solves Poisson’s equation
- div grad u(x, y) = f(x, y)
on the unit square with homogeneous Dirichlet boundary conditions
at y = 0, 1 and periodic boundary conditions at x = 0, 1.
Copyright (C) Jørgen S. Dokken 2020-2022.
This file is part of DOLFINX_MPCX.
SPDX-License-Identifier: MIT
from future import annotations
from pathlib import Path
from typing import Union
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx.fem as fem
import numpy as np
import scipy.sparse.linalg
from dolfinx import default_scalar_type
from dolfinx.common import Timer, TimingType, list_timings
from dolfinx.io import XDMFFile
from dolfinx.mesh import create_unit_square, locate_entities_boundary
from ufl import (SpatialCoordinate, TestFunction, TrialFunction, as_vector, dx,
exp, grad, inner, pi, sin)
import dolfinx_mpc.utils
from dolfinx_mpc import LinearProblem, MultiPointConstraint
import pandas as pd
Get PETSc int and scalar types
complex_mode = True if np.dtype(default_scalar_type).kind == ‘c’ else False
Create mesh and finite element
NX = 20
NY = 20
mesh = create_unit_square(MPI.COMM_WORLD, NX, NY)
V = fem.functionspace(mesh, (“Lagrange”, 1, (mesh.geometry.dim, )))
tol = 250 * np.finfo(default_scalar_type).resolution
Listing space points ### *********************************************************
dof_coordinates = V.tabulate_dof_coordinates()
df = pd.DataFrame(dof_coordinates)
df.to_csv(‘outdata/xyzs.csv’, index = None, header=False)
def dirichletboundary(x):
return np.logical_or(np.isclose(x[1], 0, atol=tol), np.isclose(x[1], 1, atol=tol))
Create Dirichlet boundary condition
facets = locate_entities_boundary(mesh, 1, dirichletboundary)
topological_dofs = fem.locate_dofs_topological(V, 1, facets)
zero = np.array([0, 0], dtype=default_scalar_type)
bc = fem.dirichletbc(zero, topological_dofs, V)
bcs = [bc]
def periodic_boundary(x):
return np.isclose(x[0], 1, atol=tol)
def periodic_relation(x):
out_x = np.zeros_like(x)
out_x[0] = 1 - x[0]
out_x[1] = x[1]
out_x[2] = x[2]
return out_x
with Timer(“~PERIODIC: Initialize MPC”):
mpc = MultiPointConstraint(V)
mpc.create_periodic_constraint_geometrical(V, periodic_boundary, periodic_relation, bcs)
mpc.finalize()
Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(u), grad(v)) * dx
x = SpatialCoordinate(mesh)
dx_ = x[0] - 0.9
dy_ = x[1] - 0.5
f = as_vector((x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_) / 0.02), 0.3 * x[1]))
rhs = inner(f, v) * dx
Setup MPC system
with Timer(“~PERIODIC: Initialize varitional problem”):
problem = LinearProblem(a, rhs, mpc, bcs=bcs)
solver = problem.solver
Give PETSc solver options a unique prefix
solver_prefix = “dolfinx_mpc_solve_{}”.format(id(solver))
solver.setOptionsPrefix(solver_prefix)
petsc_options: dict[str, Union[str, int, float]]
if complex_mode or default_scalar_type == np.float32:
petsc_options = {“ksp_type”: “preonly”, “pc_type”: “lu”}
else:
petsc_options = {“ksp_type”: “cg”, “ksp_rtol”: 1e-6, “pc_type”: “hypre”, “pc_hypre_type”: “boomeramg”,
“pc_hypre_boomeramg_max_iter”: 1, “pc_hypre_boomeramg_cycle_type”: “v” # ,
# “pc_hypre_boomeramg_print_statistics”: 1
}
Set PETSc options
opts = PETSc.Options() # type: ignore
opts.prefixPush(solver_prefix)
if petsc_options is not None:
for k, v in petsc_options.items():
opts[k] = v
opts.prefixPop()
solver.setFromOptions()
with Timer(“~PERIODIC: Assemble and solve MPC problem”):
uh = problem.solve()
# solver.view()
it = solver.getIterationNumber()
print(“Constrained solver iterations {0:d}”.format(it))
Write solution to file
outdir = Path(“results”)
outdir.mkdir(exist_ok=True, parents=True)
uh.name = “u_mpc”
outfile = XDMFFile(mesh.comm, outdir / “demo_periodic_geometrical.xdmf”, “w”)
outfile.write_mesh(mesh)
outfile.write_function(uh)
Writing the solution to a file
solData = uh.x.array
#finalSolData = np.array([dof_coordinates[i].tolist() + [solData[i]] ] for i in range(len(solData)))
print(“Number of degrees of freedom: “, len(dof_coordinates))
print(dof_coordinates.shape)
print(”=======================================”)
print("Number of solution data points: ",len(solData))
print(solData.shape)
df = pd.DataFrame(solData)
df.to_csv(‘outdata/exampsol.csv’, index = None, header=False)
############################################################
The output is:
############################################################
Constrained solver iterations 4
Number of degrees of freedom: 441
(441, 3)
Number of solution data points: 882
(882,)
Thanks,
Sujit