Steady Navier Stokes system

Good morning,

I would like to solve the linearized version of the steady Navier-Stokes system without using Multiphenics or the implemented Newton solver because then I would like to move to a more involved formulation with the Level Set. I have adapted the tutorial on the Stokes problem demo_stokes. I don’t get any errors, but what I don’t understand is that all the vectors become zeros if I solve inside the loop, and nothing is updated. Do you have any suggestions on why this is happening? My code is the following:

from mpi4py import MPI
from petsc4py import PETSc
import dolfinx
import numpy as np
import ufl
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, fem, la
from dolfinx.fem import (
    Constant,
    Function,
    dirichletbc,
    extract_function_spaces,
    form,
    functionspace,
    locate_dofs_topological,
)
from dolfinx.fem.petsc import assemble_matrix_block, assemble_vector_block
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_rectangle, locate_entities_boundary
from ufl import div, dx, grad, inner, sym, nabla_grad, dot

def analitical_velocity(x):
        values = np.zeros((2, x.shape[1]))
        values[0] = np.sin(np.pi*x[1])*np.cos(np.pi*x[1])*np.sin(np.pi*x[0])**2
        values[1] = -np.sin(np.pi*x[0])*np.cos(np.pi*x[0])*np.sin(np.pi*x[1])**2
        return values

def analitical_pressure(x):
        return x[0]*x[1]*(1-x[0]-x[1])

def analitical_force(x, nu):
        values = np.zeros((2, x.shape[1]))
        values[0] = ((1-2*x[0])*x[1]*(1-x[1])
                     - nu*2*(np.pi**2) * ((np.cos(np.pi*x[0])**2)-3*np.sin(np.pi*x[0])**2)*np.sin(np.pi*x[1])*np.cos(np.pi*x[1])
                     + np.pi*(np.sin(np.pi*x[0])**3) * (np.sin(np.pi*x[1])**2) * np.cos(np.pi*x[0]))
        values[1] = ((1-2*x[1])*x[0]*(1-x[0])
                     + nu*2*(np.pi**2) * ((np.cos(np.pi*x[1])**2)-3*np.sin(np.pi*x[1])**2)*np.sin(np.pi*x[0])*np.cos(np.pi*x[0])
                     + np.pi*(np.sin(np.pi*x[1])**3) * (np.sin(np.pi*x[0])**2) * np.cos(np.pi*x[1]))
        return values

# Function to mark x = 0, x = 1, y = 0 and y = 1
def noslip_boundary(x):
    return np.isclose(x[0], 0.0) | np.isclose(x[0], 1.0) | np.isclose(x[1], 0.0) | np.isclose(x[1], 1.0)


# Function to mark the lid (y = 1)
def lid(x):
    return np.isclose(x[1], 1.0)

# Create mesh
msh = create_rectangle(
    MPI.COMM_WORLD, [np.array([0, 0]), np.array([1, 1])], [10, 10], CellType.triangle
)

P2 = element(
    "Lagrange", msh.basix_cell(), degree=2, shape=(msh.geometry.dim,), dtype=default_real_type
)
P1 = element("Lagrange", msh.basix_cell(), degree=1, dtype=default_real_type)
V, Q = functionspace(msh, P2), functionspace(msh, P1)

# No-slip condition on boundaries where x = 0, x = 1, and y = 0
noslip = np.zeros(msh.geometry.dim, dtype=PETSc.ScalarType)  # type: ignore
u_fixed = Function(V)
u_fixed.interpolate(analitical_velocity)
facets = locate_entities_boundary(msh, 1, noslip_boundary)
bc0 = dirichletbc(u_fixed, locate_dofs_topological(V, 1, facets))

# In case you want to try without null-space
p_fixed = Function(Q)
p_fixed.interpolate(analitical_pressure)
facets = locate_entities_boundary(msh, 1, lid)
bc1 = dirichletbc(p_fixed, locate_dofs_topological(Q, 1, facets))

# Collect Dirichlet boundary conditions
bcs = [bc0]

# Define variational problem
(u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
(v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)

u_n = fem.Function(V)
u_n.x.petsc_vec.set(0)
nu = Constant(msh, PETSc.ScalarType(1e-1))

a = form([
        [(nu*inner(sym(nabla_grad(u)), sym(nabla_grad(v)))
          + dot(dot(u_n, nabla_grad(u)), v)
          + dot(dot(u, nabla_grad(u_n)), v)) * dx, - inner(p, div(v)) * dx],
        [inner(q, div(u)) * dx, Constant(msh, PETSc.ScalarType(0))*p*q * dx(999999)],
    ])
f = fem.Function(V)
f.interpolate(lambda x: analitical_force(x, nu))
L = form([(dot(dot(u_n, nabla_grad(u_n)), v) 
       + inner(f, v)) * dx, inner(Constant(msh, PETSc.ScalarType(0)), q) * dx])

a_p11 = form(inner(p, q) * dx)
a_p = [[a[0][0], None], [None, a_p11]]

def block_operators():
    """Return block operators and block RHS vector for the Stokes
    problem"""

    # Assembler matrix operator, preconditioner and RHS vector into
    # single objects but preserving block structure
    A = assemble_matrix_block(a, bcs=bcs)
    A.assemble()
    P = assemble_matrix_block(a_p, bcs=bcs)
    P.assemble()
    b = assemble_vector_block(L, a, bcs=bcs)

    ########## If you set the pressure somewhere you don't need the null space ##########
    # Set the nullspace for pressure (since pressure is determined only
    # up to a constant)
    null_vec = A.createVecLeft()
    offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
    null_vec.array[offset:] = 1.0
    null_vec.normalize()
    nsp = PETSc.NullSpace().create(vectors=[null_vec])
    assert nsp.test(A)
    A.setNullSpace(nsp)

    return A, P, b

def block_iterative_solver():
    """Solve the Navier-Stokes problem using blocked matrices and an iterative
    solver."""

    # Assembler the operators and RHS vector
    A, P, b = block_operators()

    # Build PETSc index sets for each field (global dof indices for each
    # field)
    V_map = V.dofmap.index_map
    Q_map = Q.dofmap.index_map
    offset_u = V_map.local_range[0] * V.dofmap.index_map_bs + Q_map.local_range[0]
    offset_p = offset_u + V_map.size_local * V.dofmap.index_map_bs
    is_u = PETSc.IS().createStride(
        V_map.size_local * V.dofmap.index_map_bs, offset_u, 1, comm=PETSc.COMM_SELF
    )
    is_p = PETSc.IS().createStride(Q_map.size_local, offset_p, 1, comm=PETSc.COMM_SELF)

    # Create a GMRES Krylov solver and a block-diagonal preconditioner
    # using PETSc's additive fieldsplit preconditioner
    ksp = PETSc.KSP().create(msh.comm)
    ksp.setOperators(A, P)
    ksp.setTolerances(rtol=1e-9)
    ksp.setType("gmres") 
    ksp.getPC().setType("fieldsplit")
    ksp.getPC().setFieldSplitType(PETSc.PC.CompositeType.ADDITIVE)
    ksp.getPC().setFieldSplitIS(("u", is_u), ("p", is_p))

    # Configure velocity and pressure sub-solvers
    ksp_u, ksp_p = ksp.getPC().getFieldSplitSubKSP()
    
    ksp.getPC().setFieldSplitType(PETSc.PC.CompositeType.MULTIPLICATIVE)  # Better for nonsymmetric systems
    ksp_u.setType("preonly")
    ksp_u.getPC().setType("hypre")  # Use HYPRE BoomerAMG for nonsymmetric systems
    ksp_p.setType("preonly")
    ksp_p.getPC().setType("jacobi")  # Or "hypre" if pressure block is stiff

    ksp.getPC().setUp()
    Pu, _ = ksp_u.getPC().getOperators()
    Pu.setBlockSize(msh.topology.dim)

    # Create a block vector (x) to store the full solution and solve Stokes 
    # we have an initial guess
    x = A.createVecRight()
    ksp.solve(b, x)

    # Create Functions to split u and p
    u_h, p_h = Function(V), Function(Q)
    offset = V_map.size_local * V.dofmap.index_map_bs
    u_h.x.array[:offset] = x.array_r[:offset]
    p_h.x.array[: (len(x.array_r) - offset)] = x.array_r[offset:]
    print("u_h: ", u_h.x.array[:offset])
    u_n.x.array[:] = u_h.x.array
    print("u_n: ", u_n.x.array[:])

    # Save solution to file in XDMF format for visualization, e.g. with
    # ParaView. Before writing to file, ghost values are updated using
    # `scatter_forward`.
    with XDMFFile(MPI.COMM_WORLD, "out_stokes/velocity.xdmf", "w") as ufile_xdmf:
        u_h.x.scatter_forward()
        P1 = element(
            "Lagrange", msh.basix_cell(), 1, shape=(msh.geometry.dim,), dtype=default_real_type
        )
        u1 = Function(functionspace(msh, P1))
        u1.interpolate(u_h)
        ufile_xdmf.write_mesh(msh)
        ufile_xdmf.write_function(u1)

    with XDMFFile(MPI.COMM_WORLD, "out_stokes/pressure.xdmf", "w") as pfile_xdmf:
        p_h.x.scatter_forward()
        pfile_xdmf.write_mesh(msh)
        pfile_xdmf.write_function(p_h)

    max_iterations = 2
    i = 1

    uD = fem.Function(V)
    uD.interpolate(analitical_velocity)
    L2_error = fem.form(dot(u_n - uD, u_n - uD) * dx)

    while i < max_iterations: 
        A.zeroEntries()  
        with b.localForm() as b_loc:
            b_loc.set(0) 
        A, P, b = block_operators()

        x = A.createVecRight()
        ksp.solve(b, x)
        print("x: ", x[:])
        u_h.x.array[:offset] = x.array_r[:offset]
        print("u_h: ", u_h.x.array[:offset])
        p_h.x.array[: (len(x.array_r) - offset)] = x.array_r[offset:]
        u_n.x.array[:] = u_h.x.array
        print("u_n: ", u_n.x.array[:])
        i += 1

        # Compute norm of update
        L2_norm = np.sqrt(msh.comm.allreduce(fem.assemble_scalar(L2_error), op=MPI.SUM))
        print(f"Iteration {i}: L2 error {L2_norm}")
        if L2_norm < 1e-10:
            break

        u1.interpolate(u_n)
        u1.x.scatter_forward()
        ufile_xdmf.write_function(u1, i)

    # Compute the $L^2$ norms of the solution vectors
    norm_u, norm_p = la.norm(u_h.x), la.norm(p_h.x)
    if MPI.COMM_WORLD.rank == 0:
        print(f"(B) Norm of velocity coefficient vector (blocked, iterative): {norm_u}")
        print(f"(B) Norm of pressure coefficient vector (blocked, iterative): {norm_p}")

    return norm_u, norm_p

# Solve using PETSc block matrices and an iterative solver
norm_u_1, norm_p_1 = block_iterative_solver()

This line is the perpetrator:

A.zeroEntries()  

It seems that you’ve built the ksp object for a given A, but you’re not re-assembling that actual matrix object. You’re creating a new matrix every iteration, and your solver object isn’t aware of that.

1 Like

Hello,

Thanks a lot for the answer, you made a point. Re-initializing the solver leads to have a convergent Newton algorithm.