Transitioning from mesh.xml to mesh.xdmf, from dolfin-convert to meshio

Thanks, it is updated now.
I have read this thread and tried to use the generated files but it did not work.
I want to use the physical_groups names for Dirichlet and Neumann boundary conditions (this may include boundaries on edge lines).

The problem that I want to solve will include a Mixed finite element. Here is a simple version with heat diffusion as it was possible to generate the xdmf files:

Edit: best what I was able to achieve is to use from mf.xdmf file.
I could not create the cf.xdmf file in order to use it in the volume measure.

Now the minimal code is

import meshio
msh = meshio.read("plate.msh")
for cell in msh.cells:
    if cell.type == "triangle":
        triangle_cells = cell.data
    elif  cell.type == "tetra":
        tetra_cells = cell.data

for key in msh.cell_data_dict["gmsh:physical"].keys():
    if key == "triangle":
        triangle_data = msh.cell_data_dict["gmsh:physical"][key]
    elif key == "tetra":
        tetra_data = msh.cell_data_dict["gmsh:physical"][key]
tetra_mesh = meshio.Mesh(points=msh.points, cells={"tetra": tetra_cells})
triangle_mesh =meshio.Mesh(points=msh.points,
                           cells=[("triangle", triangle_cells)],
                           cell_data={"name_to_read":[triangle_data]})
meshio.write("plate.xdmf", tetra_mesh)
meshio.write("mf.xdmf", triangle_mesh)

from dolfin import *
import numpy
import time
import matplotlib.pyplot as plt
set_log_level(LogLevel.ERROR)

mesh = Mesh()
with XDMFFile("plate.xdmf") as infile:
    infile.read(mesh)
mvc = MeshValueCollection("size_t", mesh, 2)
with XDMFFile("mf.xdmf") as infile:
    infile.read(mvc, "name_to_read")
mf = cpp.mesh.MeshFunctionSizet(mesh, mvc)


'''mvc = MeshValueCollection("size_t", mesh, 3)
with XDMFFile("cf.xdmf") as infile:
    infile.read(mvc, "name_to_read")
cf = cpp.mesh.MeshFunctionSizet(mesh, mvc)'''


ds_top = Measure("ds", domain=mesh, subdomain_data=mf, subdomain_id=11)
ds_right = Measure("ds", domain=mesh, subdomain_data=mf, subdomain_id=7)

dx_volume = Measure("dx", domain=mesh, subdomain_data=mf, subdomain_id=12) # cf, need to create cf.xdmf

print('assemble(1*ds_top)',assemble(1*ds_top))
print('assemble(1*ds_right)',assemble(1*ds_right))

Tref = 298 #300. # in K
Tamb = Tref
Ts = Constant(1273.)    # Solid temp
Tl = Constant(1514.)    # Liquid temp
Tm = Constant(1514.)    # Melting temperature (K)
rho = 7737.0e-12  # in tonne/mm3
kappa = 28.   # mJ/(smmK)
Cp = 600.0e6  # mJ/(tonK)
h = 35.0e-3  # mJ/(smm^2K)

t = 0.0
tMax = 50 #
Dt = 1    # time step
WIDTH, LENGTH, thickness  = 50., 100., 2.  # width, length and thickness (mm)
xMin, xMax  = 0.0, WIDTH
yMin, yMax  = 0.0, LENGTH
zMin, zMax  = 0.0, thickness
##mesh = BoxMesh(Point(xMin,yMin,zMin), Point(xMax,yMax,zMax),20, 60, 3)

# Define space function
Space = FunctionSpace(mesh,'P',1)

#cells = MeshFunction('size_t',mesh, 3, 0)
#facets = MeshFunction('size_t',mesh, 2, 0)
#dA = Measure('ds', domain=mesh, subdomain_data=facets, metadata={'quadrature_degree':2})
#dV = Measure('dx', domain=mesh, subdomain_data=cells,  metadata={'quadrature_degree':2})

#boundaries
#bc1 = DirichletBC(Space,Constant(1000.),right)
bc = []#[bc1]

# define functions
dT = TrialFunction(Space)
delT = TestFunction(Space)

T = Function(Space)
T0 = Function(Space)

T_init = Expression(('Tini'),Tini=Tref, degree=1) #degree=2
T = interpolate(T_init,Space)
T0.assign(T)

cutoff_Tc =  113.2 ##
Sour_surface = Expression( "t <= tc ? eta *Q_app/(pi*a*a)*exp(- (pow((x[0]-x0),2)+ pow((x[1]-y0-v*t),2))/(2.*a*a) ): 0",
                           t=t, tc=cutoff_Tc, eta=0.57, a=4 , Q_app =Constant(580e3),v=1.59, x0=0,y0=LENGTH*0.05, degree=2)
qHat = h*(T-Tref) # heat losses

F = rho*Cp*(T-T0)/Dt*delT*dx_volume +kappa*dot(grad(T),grad(delT))*dx_volume\
    -1.0*Sour_surface*delT*ds_top +qHat*delT*(ds_top+ds_right)      #1.0*Sour_surface*delT*dA(6)
J = derivative(F, T, dT)

file_results = XDMFFile("Results.xdmf")
file_results.parameters["flush_output"] = True
file_results.parameters["functions_share_mesh"] = True

it= 0 #
while t < tMax:
    it +=1
    print('iteration_No:',it)
    Sour_surface.t= t
    solve(F==0, T, bc, J=J,
          solver_parameters={'newton_solver':{'linear_solver': 'mumps', 'relative_tolerance':1e-5}}, \
           form_compiler_parameters={'cpp_optimize':True, 'representation': 'uflacs'})
    T0.assign(T)
    file_results.write(T, t)
    t+= Dt

and the msh file with smaller dimensions:

$MeshFormat
2.2 0 8
$EndMeshFormat
$PhysicalNames
11
1 1 "left_line"
1 3 "right_line"
1 4 "front_line"
1 5 "back_line"
2 6 "left"
2 7 "right"
2 8 "front"
2 9 "back"
2 10 "bottom"
2 11 "top"
3 12 "domain"
$EndPhysicalNames
$Nodes
138
1 0 0 2
2 0 0 0
3 0 100 2
4 0 100 0
5 50 0 2
6 50 0 0
7 50 100 2
8 50 100 0
9 0 9.090909090909093 2
10 0 18.1818181818182 2
11 0 27.27272727272728 2
12 0 36.36363636363636 2
13 0 45.45454545454547 2
14 0 54.54545454545461 2
15 0 63.63636363636373 2
16 0 72.72727272727286 2
17 0 81.81818181818193 2
18 0 90.90909090909096 2
19 0 9.090909090909093 0
20 0 18.1818181818182 0
21 0 27.27272727272728 0
22 0 36.36363636363636 0
23 0 45.45454545454547 0
24 0 54.54545454545461 0
25 0 63.63636363636373 0
26 0 72.72727272727286 0
27 0 81.81818181818193 0
28 0 90.90909090909096 0
29 50 19.99999999999998 2
30 50 39.99999999999994 2
31 50 60.00000000000001 2
32 50 80.0000000000001 2
33 50 19.99999999999998 0
34 50 39.99999999999994 0
35 50 60.00000000000001 0
36 50 80.0000000000001 0
37 8.203888358544519 0 0
38 18.58995430667013 0 0
39 32.45354968026022 0 0
40 8.203888358544519 0 2
41 18.58995430667013 0 2
42 32.45354968026022 0 2
43 8.203888358544519 100 0
44 18.58995430667013 100 0
45 32.45354968026022 100 0
46 8.203888358544519 100 2
47 18.58995430667013 100 2
48 32.45354968026022 100 2
49 0 50.00000000000004 1
50 0 59.09090909090917 1
51 0 40.90909090909092 1
52 0 68.1818181818183 1
53 0 13.63636363636365 1
54 0 4.545454545454547 1
55 0 22.72727272727274 1
56 0 31.81818181818182 1
57 0 77.27272727272739 0.9999999999999999
58 0 95.45454545454548 0.9999999999999991
59 0 86.36363636363645 1
60 50 70.00000000000006 1
61 50 49.99999999999998 1
62 50 9.999999999999989 1
63 50 29.99999999999996 1
64 50 90.00000000000004 1
65 41.2267748401301 0 1
66 25.52175199346517 0 1
67 13.39692133260732 0 1
68 4.10194417927226 0 1
69 41.2267748401301 100 1
70 25.52175199346517 100 1
71 13.39692133260732 100 0.9999999999999999
72 4.10194417927226 100 1
73 22.72860372753073 22.04489450003192 0
74 22.72860372753068 77.95510549996806 0
75 25.79338842975206 50.00000000000006 0
76 14.95260566232091 40.76508501685723 0
77 14.9526056623209 59.23491498314284 0
78 14.17360865121047 13.64395718364123 0
79 14.17360865121042 86.35604281635878 0
80 9.579488176010722 22.72727272727274 0
81 9.579488176010612 77.27272727272738 0
82 25.52730874663839 90.312863896919 0
83 25.52730874663841 9.687136103080924 0
84 33.86662155275111 64.75544035319339 0
85 34.18819030421103 32.58083911054511 0
86 9.381245345831953 50.00000000000004 0
87 8.090470349106848 32.56726295315534 0
88 8.09047034910683 67.43273704684475 0
89 34.66986177341006 80.92544477471404 0
90 34.73417552370205 18.54181111803364 0
91 18.71711481913258 31.7328142159387 0
92 18.50536487000291 68.05563363549513 0
93 7.521945716656088 7.631758733316776 0
94 7.521945716656008 92.36824126668328 0
95 37.64494649996119 47.74868420106803 0
96 25.70298890304702 40.35738906797691 0
97 24.0434807503234 60.25360539347754 0
98 6.484864271451944 41.03010595763889 0
99 6.484864271451936 58.9698940423612 0
100 39.8509427992789 90.91189963922278 0
101 39.85750542685971 9.033738717179981 0
102 6.255008508775456 14.25514318339161 0
103 6.255008508775408 85.74485681660848 0
104 14.80334115594389 93.80742959599222 0
105 14.80334115594392 6.192570404007786 0
106 22.72860372753073 22.04489450003193 2
107 22.72860372753068 77.95510549996807 2
108 25.79338842975206 50.00000000000006 2
109 14.95260566232092 40.76508501685723 2
110 14.95260566232091 59.23491498314284 2
111 14.17360865121047 13.64395718364123 2
112 14.17360865121042 86.35604281635878 2
113 9.57948817601072 22.72727272727274 2
114 9.579488176010612 77.27272727272738 2
115 25.52730874663839 90.312863896919 2
116 25.52730874663841 9.687136103080931 2
117 33.86662155275111 64.75544035319339 2
118 34.18819030421102 32.58083911054511 2
119 9.76161684436936 50.00000000000004 2
120 8.090470349106846 32.56726295315534 2
121 8.09047034910683 67.43273704684475 2
122 34.66986177341006 80.92544477471404 2
123 34.73417552370205 18.54181111803365 2
124 18.50536487000291 68.05563363549514 2
125 18.71711481913258 31.7328142159387 2
126 7.521945716656091 7.631758733316778 2
127 7.521945716656008 92.36824126668328 2
128 37.64494649996119 47.74868420106803 2
129 25.70298890304703 40.35738906797692 2
130 24.04348075032341 60.25360539347756 2
131 6.560938571159426 41.03010595763889 2
132 6.56093857115942 58.9698940423612 2
133 39.8509427992789 90.91189963922278 2
134 39.85750542685971 9.03373871717999 2
135 6.255008508775457 14.25514318339161 2
136 6.255008508775408 85.74485681660848 2
137 14.80334115594389 93.80742959599223 2
138 14.80334115594392 6.192570404007788 2
$EndNodes
$Elements
631
1 1 2 1 4 2 19
2 1 2 1 4 19 20
3 1 2 1 4 20 21
4 1 2 1 4 21 22
5 1 2 1 4 22 23
6 1 2 1 4 23 24
7 1 2 1 4 24 25
8 1 2 1 4 25 26
9 1 2 1 4 26 27
10 1 2 1 4 27 28
11 1 2 1 4 28 4
12 1 2 3 8 6 33
13 1 2 3 8 33 34
14 1 2 3 8 34 35
15 1 2 3 8 35 36
16 1 2 3 8 36 8
17 1 2 5 9 2 37
18 1 2 5 9 37 38
19 1 2 5 9 38 39
20 1 2 5 9 39 6
21 1 2 4 11 4 43
22 1 2 4 11 43 44
23 1 2 4 11 44 45
24 1 2 4 11 45 8
25 2 2 6 1 2 1 54
26 2 2 6 1 54 1 9
27 2 2 6 1 19 2 54
28 2 2 6 1 58 3 4
29 2 2 6 1 18 3 58
30 2 2 6 1 58 4 28
31 2 2 6 1 53 9 10
32 2 2 6 1 19 9 53
33 2 2 6 1 54 9 19
34 2 2 6 1 55 10 11
35 2 2 6 1 53 10 20
36 2 2 6 1 20 10 55
37 2 2 6 1 56 11 12
38 2 2 6 1 55 11 21
39 2 2 6 1 21 11 56
40 2 2 6 1 51 12 13
41 2 2 6 1 22 12 51
42 2 2 6 1 56 12 22
43 2 2 6 1 49 13 14
44 2 2 6 1 23 13 49
45 2 2 6 1 51 13 23
46 2 2 6 1 50 14 15
47 2 2 6 1 49 14 24
48 2 2 6 1 24 14 50
49 2 2 6 1 52 15 16
50 2 2 6 1 50 15 25
51 2 2 6 1 25 15 52
52 2 2 6 1 57 16 17
53 2 2 6 1 52 16 26
54 2 2 6 1 26 16 57
55 2 2 6 1 59 17 18
56 2 2 6 1 57 17 27
57 2 2 6 1 27 17 59
58 2 2 6 1 28 18 58
59 2 2 6 1 59 18 28
60 2 2 6 1 20 19 53
61 2 2 6 1 21 20 55
62 2 2 6 1 22 21 56
63 2 2 6 1 23 22 51
64 2 2 6 1 24 23 49
65 2 2 6 1 25 24 50
66 2 2 6 1 26 25 52
67 2 2 6 1 27 26 57
68 2 2 6 1 28 27 59
69 2 2 7 2 62 5 6
70 2 2 7 2 29 5 62
71 2 2 7 2 62 6 33
72 2 2 7 2 8 7 64
73 2 2 7 2 64 7 32
74 2 2 7 2 36 8 64
75 2 2 7 2 30 29 63
76 2 2 7 2 33 29 62
77 2 2 7 2 63 29 33
78 2 2 7 2 31 30 61
79 2 2 7 2 61 30 34
80 2 2 7 2 34 30 63
81 2 2 7 2 32 31 60
82 2 2 7 2 60 31 35
83 2 2 7 2 35 31 61
84 2 2 7 2 36 32 60
85 2 2 7 2 64 32 36
86 2 2 7 2 63 33 34
87 2 2 7 2 61 34 35
88 2 2 7 2 60 35 36
89 2 2 9 3 68 1 2
90 2 2 9 3 40 1 68
91 2 2 9 3 68 2 37
92 2 2 9 3 6 5 65
93 2 2 9 3 65 5 42
94 2 2 9 3 39 6 65
95 2 2 9 3 67 37 38
96 2 2 9 3 40 37 67
97 2 2 9 3 68 37 40
98 2 2 9 3 66 38 39
99 2 2 9 3 41 38 66
100 2 2 9 3 67 38 41
101 2 2 9 3 42 39 65
102 2 2 9 3 66 39 42
103 2 2 9 3 41 40 67
104 2 2 9 3 42 41 66
105 2 2 8 4 4 3 72
106 2 2 8 4 72 3 46
107 2 2 8 4 43 4 72
108 2 2 8 4 69 7 8
109 2 2 8 4 48 7 69
110 2 2 8 4 69 8 45
111 2 2 8 4 44 43 71
112 2 2 8 4 71 43 46
113 2 2 8 4 46 43 72
114 2 2 8 4 45 44 70
115 2 2 8 4 70 44 47
116 2 2 8 4 47 44 71
117 2 2 8 4 69 45 48
118 2 2 8 4 48 45 70
119 2 2 8 4 71 46 47
120 2 2 8 4 70 47 48
121 2 2 10 5 93 2 19
122 2 2 10 5 37 2 93
123 2 2 10 5 28 4 94
124 2 2 10 5 94 4 43
125 2 2 10 5 33 6 101
126 2 2 10 5 101 6 39
127 2 2 10 5 100 8 36
128 2 2 10 5 45 8 100
129 2 2 10 5 102 19 20
130 2 2 10 5 93 19 102
131 2 2 10 5 80 20 21
132 2 2 10 5 102 20 80
133 2 2 10 5 87 21 22
134 2 2 10 5 80 21 87
135 2 2 10 5 98 22 23
136 2 2 10 5 87 22 98
137 2 2 10 5 86 23 24
138 2 2 10 5 98 23 86
139 2 2 10 5 99 24 25
140 2 2 10 5 86 24 99
141 2 2 10 5 88 25 26
142 2 2 10 5 99 25 88
143 2 2 10 5 81 26 27
144 2 2 10 5 88 26 81
145 2 2 10 5 103 27 28
146 2 2 10 5 81 27 103
147 2 2 10 5 103 28 94
148 2 2 10 5 34 33 85
149 2 2 10 5 85 33 90
150 2 2 10 5 90 33 101
151 2 2 10 5 35 34 95
152 2 2 10 5 95 34 85
153 2 2 10 5 36 35 84
154 2 2 10 5 84 35 95
155 2 2 10 5 89 36 84
156 2 2 10 5 100 36 89
157 2 2 10 5 38 37 105
158 2 2 10 5 105 37 93
159 2 2 10 5 39 38 83
160 2 2 10 5 83 38 105
161 2 2 10 5 101 39 83
162 2 2 10 5 104 43 44
163 2 2 10 5 94 43 104
164 2 2 10 5 82 44 45
165 2 2 10 5 104 44 82
166 2 2 10 5 82 45 100
167 2 2 10 5 80 73 78
168 2 2 10 5 78 73 83
169 2 2 10 5 91 73 80
170 2 2 10 5 83 73 90
171 2 2 10 5 90 73 85
172 2 2 10 5 85 73 91
173 2 2 10 5 79 74 81
174 2 2 10 5 82 74 79
175 2 2 10 5 81 74 92
176 2 2 10 5 89 74 82
177 2 2 10 5 84 74 89
178 2 2 10 5 92 74 84
179 2 2 10 5 86 75 76
180 2 2 10 5 76 75 96
181 2 2 10 5 77 75 86
182 2 2 10 5 97 75 77
183 2 2 10 5 95 75 84
184 2 2 10 5 84 75 97
185 2 2 10 5 96 75 95
186 2 2 10 5 86 76 98
187 2 2 10 5 87 76 91
188 2 2 10 5 98 76 87
189 2 2 10 5 91 76 96
190 2 2 10 5 99 77 86
191 2 2 10 5 92 77 88
192 2 2 10 5 88 77 99
193 2 2 10 5 97 77 92
194 2 2 10 5 80 78 102
195 2 2 10 5 105 78 83
196 2 2 10 5 102 78 93
197 2 2 10 5 93 78 105
198 2 2 10 5 103 79 81
199 2 2 10 5 82 79 104
200 2 2 10 5 94 79 103
201 2 2 10 5 104 79 94
202 2 2 10 5 91 80 87
203 2 2 10 5 88 81 92
204 2 2 10 5 89 82 100
205 2 2 10 5 101 83 90
206 2 2 10 5 92 84 97
207 2 2 10 5 96 85 91
208 2 2 10 5 95 85 96
209 2 2 11 6 9 1 126
210 2 2 11 6 126 1 40
211 2 2 11 6 127 3 18
212 2 2 11 6 46 3 127
213 2 2 11 6 134 5 29
214 2 2 11 6 42 5 134
215 2 2 11 6 32 7 133
216 2 2 11 6 133 7 48
217 2 2 11 6 10 9 135
218 2 2 11 6 135 9 126
219 2 2 11 6 11 10 113
220 2 2 11 6 113 10 135
221 2 2 11 6 12 11 120
222 2 2 11 6 120 11 113
223 2 2 11 6 13 12 131
224 2 2 11 6 131 12 120
225 2 2 11 6 14 13 119
226 2 2 11 6 119 13 131
227 2 2 11 6 15 14 132
228 2 2 11 6 132 14 119
229 2 2 11 6 16 15 121
230 2 2 11 6 121 15 132
231 2 2 11 6 17 16 114
232 2 2 11 6 114 16 121
233 2 2 11 6 18 17 136
234 2 2 11 6 136 17 114
235 2 2 11 6 127 18 136
236 2 2 11 6 118 29 30
237 2 2 11 6 123 29 118
238 2 2 11 6 134 29 123
239 2 2 11 6 128 30 31
240 2 2 11 6 118 30 128
241 2 2 11 6 117 31 32
242 2 2 11 6 128 31 117
243 2 2 11 6 117 32 122
244 2 2 11 6 122 32 133
245 2 2 11 6 138 40 41
246 2 2 11 6 126 40 138
247 2 2 11 6 116 41 42
248 2 2 11 6 138 41 116
249 2 2 11 6 116 42 134
250 2 2 11 6 47 46 137
251 2 2 11 6 137 46 127
252 2 2 11 6 48 47 115
253 2 2 11 6 115 47 137
254 2 2 11 6 133 48 115
255 2 2 11 6 111 106 113
256 2 2 11 6 116 106 111
257 2 2 11 6 113 106 125
258 2 2 11 6 123 106 116
259 2 2 11 6 118 106 123
260 2 2 11 6 125 106 118
261 2 2 11 6 114 107 112
262 2 2 11 6 112 107 115
263 2 2 11 6 124 107 114
264 2 2 11 6 115 107 122
265 2 2 11 6 122 107 117
266 2 2 11 6 117 107 124
267 2 2 11 6 109 108 119
268 2 2 11 6 129 108 109
269 2 2 11 6 119 108 110
270 2 2 11 6 110 108 130
271 2 2 11 6 117 108 128
272 2 2 11 6 130 108 117
273 2 2 11 6 128 108 129
274 2 2 11 6 131 109 119
275 2 2 11 6 125 109 120
276 2 2 11 6 120 109 131
277 2 2 11 6 129 109 125
278 2 2 11 6 119 110 132
279 2 2 11 6 121 110 124
280 2 2 11 6 132 110 121
281 2 2 11 6 124 110 130
282 2 2 11 6 135 111 113
283 2 2 11 6 116 111 138
284 2 2 11 6 126 111 135
285 2 2 11 6 138 111 126
286 2 2 11 6 114 112 136
287 2 2 11 6 137 112 115
288 2 2 11 6 136 112 127
289 2 2 11 6 127 112 137
290 2 2 11 6 120 113 125
291 2 2 11 6 124 114 121
292 2 2 11 6 133 115 122
293 2 2 11 6 123 116 134
294 2 2 11 6 130 117 124
295 2 2 11 6 125 118 129
296 2 2 11 6 129 118 128
297 4 2 12 1 21 80 11 55
298 4 2 12 1 20 10 113 55
299 4 2 12 1 81 27 57 17
300 4 2 12 1 81 16 57 26
301 4 2 12 1 56 22 12 120
302 4 2 12 1 25 88 52 15
303 4 2 12 1 88 26 52 16
304 4 2 12 1 56 21 120 11
305 4 2 12 1 52 88 16 121
306 4 2 12 1 56 21 87 120
307 4 2 12 1 97 92 130 84
308 4 2 12 1 119 75 77 110
309 4 2 12 1 75 119 76 109
310 4 2 12 1 80 91 87 120
311 4 2 12 1 78 73 111 116
312 4 2 12 1 113 78 73 111
313 4 2 12 1 92 121 81 88
314 4 2 12 1 103 28 59 18
315 4 2 12 1 102 53 19 9
316 4 2 12 1 103 59 136 18
317 4 2 12 1 53 102 135 9
318 4 2 12 1 22 98 12 120
319 4 2 12 1 88 25 99 15
320 4 2 12 1 21 80 120 11
321 4 2 12 1 88 16 81 26
322 4 2 12 1 119 75 86 77
323 4 2 12 1 119 75 76 86
324 4 2 12 1 21 80 87 120
325 4 2 12 1 81 121 16 88
326 4 2 12 1 102 10 135 113
327 4 2 12 1 114 103 17 136
328 4 2 12 1 22 56 87 120
329 4 2 12 1 52 88 121 15
330 4 2 12 1 98 131 12 120
331 4 2 12 1 99 132 121 15
332 4 2 12 1 11 80 113 55
333 4 2 12 1 80 20 113 55
334 4 2 12 1 81 57 114 17
335 4 2 12 1 81 16 114 57
336 4 2 12 1 78 113 73 80
337 4 2 12 1 75 119 109 108
338 4 2 12 1 119 75 110 108
339 4 2 12 1 77 75 97 110
340 4 2 12 1 79 112 107 115
341 4 2 12 1 114 79 112 107
342 4 2 12 1 37 67 105 40
343 4 2 12 1 43 71 46 137
344 4 2 12 1 104 137 112 115
345 4 2 12 1 105 78 138 83
346 4 2 12 1 98 22 12 51
347 4 2 12 1 25 50 99 15
348 4 2 12 1 115 100 89 82
349 4 2 12 1 80 91 120 113
350 4 2 12 1 78 73 116 83
351 4 2 12 1 30 34 63 85
352 4 2 12 1 89 107 117 122
353 4 2 12 1 122 100 115 133
354 4 2 12 1 118 30 63 85
355 4 2 12 1 102 20 10 113
356 4 2 12 1 27 81 103 17
357 4 2 12 1 131 98 12 51
358 4 2 12 1 99 50 132 15
359 4 2 12 1 90 134 83 101
360 4 2 12 1 98 22 87 120
361 4 2 12 1 88 99 121 15
362 4 2 12 1 62 134 33 101
363 4 2 12 1 79 104 112 115
364 4 2 12 1 78 111 138 116
365 4 2 12 1 121 124 81 114
366 4 2 12 1 19 93 9 54
367 4 2 12 1 28 94 58 18
368 4 2 12 1 108 75 84 95
369 4 2 12 1 23 86 49 13
370 4 2 12 1 86 24 49 14
371 4 2 12 1 130 92 124 117
372 4 2 12 1 73 113 91 80
373 4 2 12 1 67 105 40 138
374 4 2 12 1 43 104 71 137
375 4 2 12 1 92 117 74 124
376 4 2 12 1 134 90 33 101
377 4 2 12 1 78 102 135 113
378 4 2 12 1 79 103 114 136
379 4 2 12 1 117 128 108 95
380 4 2 12 1 107 89 117 74
381 4 2 12 1 90 73 123 85
382 4 2 12 1 80 120 11 113
383 4 2 12 1 81 121 114 16
384 4 2 12 1 73 106 111 116
385 4 2 12 1 90 29 123 134
386 4 2 12 1 113 73 106 111
387 4 2 12 1 129 95 85 96
388 4 2 12 1 100 122 115 89
389 4 2 12 1 107 79 115 82
390 4 2 12 1 44 115 70 47
391 4 2 12 1 41 38 83 66
392 4 2 12 1 31 117 60 35
393 4 2 12 1 115 100 82 45
394 4 2 12 1 116 134 42 83
395 4 2 12 1 104 115 44 137
396 4 2 12 1 41 105 138 83
397 4 2 12 1 74 107 124 117
398 4 2 12 1 117 84 35 95
399 4 2 12 1 44 115 82 70
400 4 2 12 1 116 41 83 66
401 4 2 12 1 133 64 36 100
402 4 2 12 1 130 117 108 84
403 4 2 12 1 91 120 113 125
404 4 2 12 1 106 73 123 116
405 4 2 12 1 122 133 36 100
406 4 2 12 1 79 104 115 82
407 4 2 12 1 138 78 116 83
408 4 2 12 1 121 92 81 124
409 4 2 12 1 9 93 126 54
410 4 2 12 1 94 58 18 127
411 4 2 12 1 85 95 30 34
412 4 2 12 1 86 98 131 13
413 4 2 12 1 86 99 14 132
414 4 2 12 1 37 126 68 40
415 4 2 12 1 43 127 46 72
416 4 2 12 1 60 117 84 35
417 4 2 12 1 20 102 80 113
418 4 2 12 1 103 81 114 17
419 4 2 12 1 107 115 89 82
420 4 2 12 1 91 120 76 87
421 4 2 12 1 126 37 68 93
422 4 2 12 1 43 127 72 94
423 4 2 12 1 36 122 100 89
424 4 2 12 1 94 28 103 18
425 4 2 12 1 93 102 19 9
426 4 2 12 1 98 131 13 51
427 4 2 12 1 99 50 14 132
428 4 2 12 1 136 103 18 127
429 4 2 12 1 102 93 135 9
430 4 2 12 1 23 98 86 13
431 4 2 12 1 24 86 99 14
432 4 2 12 1 74 79 107 82
433 4 2 12 1 117 108 84 95
434 4 2 12 1 135 78 113 111
435 4 2 12 1 114 79 136 112
436 4 2 12 1 88 77 92 121
437 4 2 12 1 92 74 81 124
438 4 2 12 1 117 74 89 84
439 4 2 12 1 137 115 44 47
440 4 2 12 1 38 105 41 83
441 4 2 12 1 75 109 129 108
442 4 2 12 1 79 103 136 127
443 4 2 12 1 93 135 78 102
444 4 2 12 1 134 29 62 33
445 4 2 12 1 107 115 122 89
446 4 2 12 1 129 75 95 96
447 4 2 12 1 90 29 134 33
448 4 2 12 1 115 104 44 82
449 4 2 12 1 41 138 116 83
450 4 2 12 1 30 95 128 61
451 4 2 12 1 23 98 13 51
452 4 2 12 1 50 24 99 14
453 4 2 12 1 103 59 17 136
454 4 2 12 1 53 102 10 135
455 4 2 12 1 117 92 74 84
456 4 2 12 1 80 102 78 113
457 4 2 12 1 81 79 103 114
458 4 2 12 1 110 77 132 121
459 4 2 12 1 76 131 120 109
460 4 2 12 1 74 107 89 82
461 4 2 12 1 130 92 117 84
462 4 2 12 1 70 115 82 45
463 4 2 12 1 42 116 83 66
464 4 2 12 1 103 94 18 127
465 4 2 12 1 93 135 9 126
466 4 2 12 1 37 105 126 40
467 4 2 12 1 127 137 43 46
468 4 2 12 1 104 127 43 94
469 4 2 12 1 93 37 105 126
470 4 2 12 1 79 94 103 127
471 4 2 12 1 135 93 78 126
472 4 2 12 1 120 125 76 109
473 4 2 12 1 30 95 61 34
474 4 2 12 1 129 75 108 95
475 4 2 12 1 105 126 40 138
476 4 2 12 1 127 104 43 137
477 4 2 12 1 128 129 108 95
478 4 2 12 1 20 53 102 10
479 4 2 12 1 27 103 59 17
480 4 2 12 1 92 77 110 121
481 4 2 12 1 64 32 133 36
482 4 2 12 1 120 91 76 125
483 4 2 12 1 32 122 133 36
484 4 2 12 1 136 79 127 112
485 4 2 12 1 78 135 126 111
486 4 2 12 1 92 97 130 110
487 4 2 12 1 115 70 48 45
488 4 2 12 1 39 42 83 66
489 4 2 12 1 79 104 94 127
490 4 2 12 1 78 93 105 126
491 4 2 12 1 124 92 110 121
492 4 2 12 1 119 86 131 13
493 4 2 12 1 119 86 14 132
494 4 2 12 1 127 104 137 112
495 4 2 12 1 105 78 126 138
496 4 2 12 1 76 119 131 109
497 4 2 12 1 77 119 110 132
498 4 2 12 1 79 104 127 112
499 4 2 12 1 126 78 111 138
500 4 2 12 1 92 77 97 110
501 4 2 12 1 92 130 124 110
502 4 2 12 1 105 67 41 138
503 4 2 12 1 104 44 71 137
504 4 2 12 1 105 67 38 41
505 4 2 12 1 44 71 137 47
506 4 2 12 1 68 126 1 40
507 4 2 12 1 53 20 102 19
508 4 2 12 1 10 53 135 9
509 4 2 12 1 6 62 33 101
510 4 2 12 1 12 56 120 11
511 4 2 12 1 68 2 93 37
512 4 2 12 1 25 50 24 99
513 4 2 12 1 67 37 105 38
514 4 2 12 1 2 93 19 54
515 4 2 12 1 22 98 23 51
516 4 2 12 1 10 11 113 55
517 4 2 12 1 41 116 42 66
518 4 2 12 1 59 17 136 18
519 4 2 12 1 56 21 22 87
520 4 2 12 1 48 7 133 69
521 4 2 12 1 25 88 26 52
522 4 2 12 1 4 28 94 58
523 4 2 12 1 104 44 43 71
524 4 2 12 1 64 32 7 133
525 4 2 12 1 27 26 81 57
526 4 2 12 1 30 29 118 63
527 4 2 12 1 57 114 17 16
528 4 2 12 1 9 126 1 54
529 4 2 12 1 23 86 24 49
530 4 2 12 1 43 4 94 72
531 4 2 12 1 28 27 103 59
532 4 2 12 1 70 47 115 48
533 4 2 12 1 71 46 137 47
534 4 2 12 1 58 3 18 127
535 4 2 12 1 72 46 3 127
536 4 2 12 1 21 20 80 55
537 4 2 12 1 16 52 121 15
538 4 2 12 1 50 14 132 15
539 4 2 12 1 67 40 41 138
540 4 2 12 1 131 12 13 51
541 4 2 12 1 65 5 134 42
542 4 2 12 1 38 39 83 66
543 4 2 12 1 34 35 95 61
544 4 2 12 1 64 36 100 8
545 4 2 12 1 100 69 8 45
546 4 2 12 1 34 63 85 33
547 4 2 12 1 31 117 32 60
548 4 2 12 1 44 70 82 45
549 4 2 12 1 36 60 84 35
550 4 2 12 1 30 128 31 61
551 4 2 12 1 39 65 6 101
552 4 2 12 1 29 5 134 62
553 4 2 12 1 29 118 85 123
554 4 2 12 1 85 118 29 63
555 4 2 12 1 85 90 29 123
556 4 2 12 1 33 85 29 63
557 4 2 12 1 33 29 85 90
558 4 2 12 1 117 122 36 89
559 4 2 12 1 36 84 117 89
560 4 2 12 1 117 84 36 60
561 4 2 12 1 97 84 108 75
562 4 2 12 1 108 84 97 130
563 4 2 12 1 108 110 97 75
564 4 2 12 1 97 110 108 130
565 4 2 12 1 61 95 31 35
566 4 2 12 1 61 31 95 128
567 4 2 12 1 117 31 95 35
568 4 2 12 1 117 95 31 128
569 4 2 12 1 32 36 117 122
570 4 2 12 1 117 36 32 60
571 4 2 12 1 7 133 100 64
572 4 2 12 1 100 133 7 69
573 4 2 12 1 100 8 7 64
574 4 2 12 1 7 8 100 69
575 4 2 12 1 5 134 101 65
576 4 2 12 1 101 134 5 62
577 4 2 12 1 101 6 5 65
578 4 2 12 1 5 6 101 62
579 4 2 12 1 73 83 123 116
580 4 2 12 1 73 123 83 90
581 4 2 12 1 134 123 83 116
582 4 2 12 1 134 83 123 90
583 4 2 12 1 129 128 85 95
584 4 2 12 1 129 85 128 118
585 4 2 12 1 30 85 128 95
586 4 2 12 1 30 128 85 118
587 4 2 12 1 100 69 48 133
588 4 2 12 1 48 69 100 45
589 4 2 12 1 48 115 100 133
590 4 2 12 1 100 115 48 45
591 4 2 12 1 134 83 39 42
592 4 2 12 1 39 83 134 101
593 4 2 12 1 39 65 134 42
594 4 2 12 1 134 65 39 101
595 4 2 12 1 129 125 85 118
596 4 2 12 1 124 107 81 114
597 4 2 12 1 124 81 107 74
598 4 2 12 1 79 81 107 114
599 4 2 12 1 79 107 81 74
600 4 2 12 1 125 106 85 118
601 4 2 12 1 123 106 85 73
602 4 2 12 1 123 85 106 118
603 4 2 12 1 120 98 76 87
604 4 2 12 1 120 76 98 131
605 4 2 12 1 99 121 77 88
606 4 2 12 1 77 121 99 132
607 4 2 12 1 132 86 77 119
608 4 2 12 1 132 77 86 99
609 4 2 12 1 131 86 76 98
610 4 2 12 1 131 76 86 119
611 4 2 12 1 1 2 93 68
612 4 2 12 1 93 2 1 54
613 4 2 12 1 93 126 1 68
614 4 2 12 1 1 126 93 54
615 4 2 12 1 4 94 3 58
616 4 2 12 1 4 3 94 72
617 4 2 12 1 127 3 94 58
618 4 2 12 1 127 94 3 72
619 4 2 12 1 13 14 86 49
620 4 2 12 1 13 86 14 119
621 4 2 12 1 125 76 96 91
622 4 2 12 1 125 85 96 129
623 4 2 12 1 96 85 125 91
624 4 2 12 1 96 125 109 76
625 4 2 12 1 109 125 96 129
626 4 2 12 1 109 75 96 76
627 4 2 12 1 96 75 109 129
628 4 2 12 1 91 113 106 125
629 4 2 12 1 106 113 91 73
630 4 2 12 1 106 85 91 125
631 4 2 12 1 91 85 106 73
$EndElements

could you please help me with this issue?

1 Like