I have got the following old Python code which uses Fenics to solve the Poisson problem. I used to run it some years ago but it does not run with my current system.
I am basically following “User-defined expression by subclassing” as described on this page:
https://fenicsproject.org/docs/dolfin/1.5.0/python/programmers-reference/functions/expression/Expression.html
The error message that I get is an uncaught exception:
RuntimeError: Must supply C++ code to Expression. You may want to use UserExpression
I wonder whether anybody can confirm that the code does not run and how to fix the issue.
The code follows:
#!/usr/bin/python3
from fenics import *
from dolfin import *
import numpy as np
mesh = UnitSquareMesh(4, 4)
initial_refinements = 0 # number of initial refinements before we start
polydegree = 3 # polynomial degree of finite element space
expressiondegree = 10 # combined polynomial degree
number_of_iterations = 7 # number of iterations for main loop
for i in range( 1, initial_refinements ):
mesh = refine( mesh )
old_error_L2 = 1
old_error_H1 = 1
old_error_H10 = 1
old_error_max = 1
class Expression_u_D(Expression):
def eval(self, value, x):
value[0] = exp( - x[0]*x[0] - x[1]*x[1] )
class Expression_f(Expression):
def eval(self, value, x):
value[0] = 4 * exp( - x[0]*x[0] - x[1]*x[1] ) * ( 1 - x[0]*x[0] - x[1]*x[1] )
for i in range(0,number_of_iterations):
print( "Iteration: %d" % i )
print( "Number of cells: %d" % mesh.num_cells() )
V = FunctionSpace(mesh, 'Lagrange', polydegree)
u_D = Expression_u_D( degree = expressiondegree )
def boundary(x, on_boundary):
return on_boundary
bc = DirichletBC(V, u_D, boundary)
u = TrialFunction(V)
v = TestFunction(V)
f = Expression_f( degree = expressiondegree )
a = dot( grad(u), grad(v) ) * dx
L = f * v * dx
parms = parameters["krylov_solver"]
parms["relative_tolerance"] = 1.e-10
parms["absolute_tolerance"] = 1.e-12
u = Function(V)
solve(a == L, u, bc, solver_parameters={"linear_solver" : "cg", "preconditioner" : "amg", "krylov_solver": parms} )
plot(u)
plot(mesh)
vtkfile = File('poisson/solution.pvd')
vtkfile << u
error_L2 = errornorm( u_D, u, 'L2', degree_rise=7, mesh=mesh )
error_H1 = errornorm( u_D, u, 'H1', degree_rise=7, mesh=mesh )
error_H10 = errornorm( u_D, u, 'H10', degree_rise=7, mesh=mesh )
vertex_values_u_D = u_D.compute_vertex_values(mesh)
vertex_values_u = u.compute_vertex_values(mesh)
import numpy as np
error_max = np.max(np.abs(vertex_values_u_D - vertex_values_u))
print('error_L2 = {:e}\t : {:f}'.format( error_L2, np.log2(old_error_L2 /error_L2 ) ) )
print('error_H1 = {:e}\t : {:f}'.format( error_H1, np.log2(old_error_H1 /error_H1 ) ) )
print('error_H10 = {:e}\t : {:f}'.format( error_H10, np.log2(old_error_H10/error_H10) ) )
print('error_max = {:e}\t : {:f}'.format( error_max, np.log2(old_error_max/error_max) ) )
old_error_L2 = error_L2
old_error_H1 = error_H1
old_error_H10 = error_H10
old_error_max = error_max
mesh = refine( mesh )
# Hold plot
# interactive()