I used dolfin to calcualte the magnetic field of some current density distributions in 3D (see code below), I would like to improve the meshing an since this means dealing with gmsh I thought I’d switch to FEniCSx anyway. However I dont even know where to start here. Any help is appreciated!
from dolfin import *
import matplotlib.pyplot as plt
import numpy as np
from mshr import *
from tqdm import tqdm
import h5py
# Parameters
mu_0 = 4 * np.pi * 1e-7
radius_inner = 9e-6
radius_outer = 11e-6
height = 2e-6
radius_domain = 30e-6
total_current = 0.2
# Frist try
#a_bow = 5e-6 # Lobe size parameter (5 μm)
#b_bow = 10e-6 # Offset parameter
a_bow = 10e-6 # Lobe size parameter (5 μm)
b_bow = 4e-6 # Offset parameter
width = 2e-6 # Width of the conductor
# Volume-based current density
profile_ring = (radius_outer - radius_inner)*height
current_density = total_current/profile_ring
print(f"Ring profile: {profile_ring:.3e} m²")
print(f"Uniform current density: {current_density:.3e} A/m²")
# Mesh
#domain = Sphere(Point(0,0,0), radius_domain)
#mesh = generate_mesh(domain, 16)
#print("3D mesh generated.")
# Define bow-tie geometry in 2D
def bow_tie_geometry(resolution=64):
theta = np.linspace(0, 2 * np.pi, resolution)
points = []
for t in theta:
r = a_bow * (1 - np.cos(2 * t)) + b_bow
x = r * np.cos(t)
y = r * np.sin(t)
points.append(Point(x, y))
return Polygon(points)
bow_tie_shape = bow_tie_geometry(resolution=128)
# Subtract the bow-tie region (2D cross-section) from the box
domain = bow_tie_domain
mesh = generate_mesh(domain, 64)
print("Mesh generated with bow-tie shape.")
V = VectorFunctionSpace(mesh, "CG", 1)
bc = DirichletBC(V, Constant((0,0,0)), "on_boundary")
# Bow-tie boundary definition
def bow_tie_boundary(theta):
r = a_bow * (1 - np.cos(2 * theta)) + b_bow
x = r * np.cos(theta)
y = r * np.sin(theta)
return x, y
# Tangent vector calculation
def tangent_vector(theta):
r = a_bow * (1 - np.cos(2 * theta)) + b_bow
dr_dtheta = 2 * a_bow * np.sin(2 * theta)
x_tangent = dr_dtheta * np.cos(theta) - r * np.sin(theta)
y_tangent = dr_dtheta * np.sin(theta) + r * np.cos(theta)
magnitude = np.sqrt(x_tangent**2 + y_tangent**2)
return x_tangent / magnitude, y_tangent / magnitude # Normalize the tangent vector
# Current density class
class BowTieCurrentDensity(UserExpression):
def __init__(self, a_bow, b_bow, width, height, current_density, **kwargs):
super().__init__(**kwargs)
self.a = a_bow
self.b = b_bow
self.width = width
self.height = height
self.current_density = current_density
def eval(self, values, x):
# Compute the angle in polar coordinates
theta = np.arctan2(x[1], x[0])
# Calculate the bow-tie boundary at this angle
bow_tie_x, bow_tie_y = bow_tie_boundary(theta)
# Check if the point is within the cross-sectional bounds
dx = x[0] - bow_tie_x
dy = x[1] - bow_tie_y
if abs(dx) <= self.width / 2 and abs(dy) <= self.height / 2:
# Get tangent vector for the bow-tie curve
tangent_x, tangent_y = tangent_vector(theta)
values[0] = tangent_x * self.current_density
values[1] = tangent_y * self.current_density
values[2] = 0.0 # No current in the z-direction
else:
# Outside the bow-tie region, set current to zero
values[0] = 0.0
values[1] = 0.0
values[2] = 0.0
def value_shape(self):
return (3,)
class CurrentDensity(UserExpression):
def eval(self, values, x):
r = np.sqrt(x[0]**2 + x[1]**2)
z = x[2]
if (radius_inner <= r <= radius_outer) and (abs(z) <= height/2):
# Current in azimuthal direction
values[0] = (x[1]/r)*current_density
values[1] = (-x[0]/r)*current_density
values[2] = 0.0
else:
values[0] = 0.0
values[1] = 0.0
values[2] = 0.0
def value_shape(self):
return (3,)
J = BowTieCurrentDensity(a_bow, b_bow, width, height, current_density, degree=1)
A = TrialFunction(V)
v = TestFunction(V)
alpha = 1e-6
a = inner(curl(A), curl(v))*dx + alpha*inner(div(A), div(v))*dx
L = mu_0*inner(J, v)*dx
A_sol = Function(V)
#solve(a == L, A_sol, bc, solver_parameters={"linear_solver": "mumps"})
solve(a == L, A_sol, bc, solver_parameters={"linear_solver": "gmres", "preconditioner": "ilu"})
# Project B
W = VectorFunctionSpace(mesh, "DG", 0)
B = project(curl(A_sol), W)
# 1. Save A_sol, B, and J_sol using XDMFFile
with XDMFFile("A_sol.xdmf") as xdmf:
xdmf.write(A_sol)
with XDMFFile("B.xdmf") as xdmf:
xdmf.write(B)
# 2. Save parameters using h5py
with h5py.File("parameters.h5", "w") as f:
f.attrs["mu_0"] = mu_0
f.attrs["radius_inner"] = radius_inner
f.attrs["radius_outer"] = radius_outer
f.attrs["height"] = height
f.attrs["radius_domain"] = radius_domain
f.attrs["total_current"] = total_current
f.attrs["current_density"] = current_density
print("Files saved successfully.")