Magnetic field currend density distribution 3D (from FEniCS)

I used dolfin to calcualte the magnetic field of some current density distributions in 3D (see code below), I would like to improve the meshing an since this means dealing with gmsh I thought I’d switch to FEniCSx anyway. However I dont even know where to start here. Any help is appreciated!

from dolfin import *
import matplotlib.pyplot as plt
import numpy as np
from mshr import *
from tqdm import tqdm
import h5py


# Parameters
mu_0 = 4 * np.pi * 1e-7
radius_inner = 9e-6
radius_outer = 11e-6
height = 2e-6
radius_domain = 30e-6
total_current = 0.2

# Frist try
#a_bow = 5e-6  # Lobe size parameter (5 μm)
#b_bow = 10e-6  # Offset parameter

a_bow = 10e-6  # Lobe size parameter (5 μm)
b_bow = 4e-6  # Offset parameter


width = 2e-6  # Width of the conductor


# Volume-based current density
profile_ring = (radius_outer - radius_inner)*height
current_density = total_current/profile_ring
print(f"Ring profile: {profile_ring:.3e} m²")
print(f"Uniform current density: {current_density:.3e} A/m²")

# Mesh
#domain = Sphere(Point(0,0,0), radius_domain)
#mesh = generate_mesh(domain, 16)
#print("3D mesh generated.")



# Define bow-tie geometry in 2D
def bow_tie_geometry(resolution=64):
    theta = np.linspace(0, 2 * np.pi, resolution)
    points = []
    for t in theta:
        r = a_bow * (1 - np.cos(2 * t)) + b_bow
        x = r * np.cos(t)
        y = r * np.sin(t)
        points.append(Point(x, y))
    return Polygon(points)

bow_tie_shape = bow_tie_geometry(resolution=128)

# Subtract the bow-tie region (2D cross-section) from the box
domain = bow_tie_domain
mesh = generate_mesh(domain, 64)
print("Mesh generated with bow-tie shape.")


V = VectorFunctionSpace(mesh, "CG", 1)
bc = DirichletBC(V, Constant((0,0,0)), "on_boundary")


# Bow-tie boundary definition
def bow_tie_boundary(theta):
    r = a_bow * (1 - np.cos(2 * theta)) + b_bow
    x = r * np.cos(theta)
    y = r * np.sin(theta)
    return x, y

# Tangent vector calculation
def tangent_vector(theta):
    r = a_bow * (1 - np.cos(2 * theta)) + b_bow
    dr_dtheta = 2 * a_bow * np.sin(2 * theta)
    x_tangent = dr_dtheta * np.cos(theta) - r * np.sin(theta)
    y_tangent = dr_dtheta * np.sin(theta) + r * np.cos(theta)
    magnitude = np.sqrt(x_tangent**2 + y_tangent**2)
    return x_tangent / magnitude, y_tangent / magnitude  # Normalize the tangent vector






# Current density class
class BowTieCurrentDensity(UserExpression):
    def __init__(self, a_bow, b_bow, width, height, current_density, **kwargs):
        super().__init__(**kwargs)
        self.a = a_bow
        self.b = b_bow
        self.width = width
        self.height = height
        self.current_density = current_density
    

    def eval(self, values, x):
        # Compute the angle in polar coordinates
        theta = np.arctan2(x[1], x[0])

        # Calculate the bow-tie boundary at this angle
        bow_tie_x, bow_tie_y = bow_tie_boundary(theta)

        # Check if the point is within the cross-sectional bounds
        dx = x[0] - bow_tie_x
        dy = x[1] - bow_tie_y
        if abs(dx) <= self.width / 2 and abs(dy) <= self.height / 2:
            # Get tangent vector for the bow-tie curve
            tangent_x, tangent_y = tangent_vector(theta)
            values[0] = tangent_x * self.current_density
            values[1] = tangent_y * self.current_density
            values[2] = 0.0  # No current in the z-direction
        else:
            # Outside the bow-tie region, set current to zero
            values[0] = 0.0
            values[1] = 0.0
            values[2] = 0.0

    def value_shape(self):
        return (3,)


class CurrentDensity(UserExpression):
    def eval(self, values, x):
        r = np.sqrt(x[0]**2 + x[1]**2)
        z = x[2]
        if (radius_inner <= r <= radius_outer) and (abs(z) <= height/2):
            # Current in azimuthal direction
            values[0] = (x[1]/r)*current_density
            values[1] = (-x[0]/r)*current_density
            values[2] = 0.0
        else:
            values[0] = 0.0
            values[1] = 0.0
            values[2] = 0.0
    def value_shape(self):
        return (3,)

J = BowTieCurrentDensity(a_bow, b_bow, width, height, current_density, degree=1)

A = TrialFunction(V)
v = TestFunction(V)

alpha = 1e-6
a = inner(curl(A), curl(v))*dx + alpha*inner(div(A), div(v))*dx
L = mu_0*inner(J, v)*dx




A_sol = Function(V)
#solve(a == L, A_sol, bc, solver_parameters={"linear_solver": "mumps"})
solve(a == L, A_sol, bc, solver_parameters={"linear_solver": "gmres", "preconditioner": "ilu"})

# Project B
W = VectorFunctionSpace(mesh, "DG", 0)
B = project(curl(A_sol), W)

# 1. Save A_sol, B, and J_sol using XDMFFile
with XDMFFile("A_sol.xdmf") as xdmf:
    xdmf.write(A_sol)
with XDMFFile("B.xdmf") as xdmf:
    xdmf.write(B)

# 2. Save parameters using h5py
with h5py.File("parameters.h5", "w") as f:
    f.attrs["mu_0"] = mu_0
    f.attrs["radius_inner"] = radius_inner
    f.attrs["radius_outer"] = radius_outer
    f.attrs["height"] = height
    f.attrs["radius_domain"] = radius_domain
    f.attrs["total_current"] = total_current
    f.attrs["current_density"] = current_density

print("Files saved successfully.")

I would start with the demos:
https://docs.fenicsproject.org/dolfinx/v0.9.0/python/demos.html
then the tutorial or workshop notes I made:

https://jsdokken.com/dolfinx-tutorial/

http://jsdokken.com/FEniCS-workshop/