Neumann BC for 2 conductors

Hello,

I have a question about Neumann boundary conditions.
I have a 2D plot in a room where the bottom is the ground with Dirichlet BC = 0 and 2 electrical conductors with a positive voltage and a negative voltage. The surface of the conductors should contain the Neumann boundary condition. I can’t get both conditions to be executed.

Here is the code. Unfortunately it is a bit big.
But only the bottom part is important.

#Mesh Erzeugung:(mit GMSH)

from mpi4py import MPI
from dolfinx import mesh
import warnings

warnings.filterwarnings("ignore")

import gmsh

gmsh.initialize()

from dolfinx import fem
from dolfinx import nls
from dolfinx import log
from dolfinx import io
from dolfinx.cpp.mesh import to_type, cell_entity_type
from dolfinx.fem import Constant, Function, FunctionSpace, assemble_scalar, dirichletbc, form, locate_dofs_topological, set_bc
from dolfinx.fem.petsc import apply_lifting, assemble_matrix, assemble_vector, create_vector, set_bc
from dolfinx.graph import create_adjacencylist
from dolfinx.geometry import BoundingBoxTree, compute_collisions, compute_colliding_cells
from dolfinx.io import (XDMFFile, cell_perm_gmsh, distribute_entity_data, extract_gmsh_geometry,
                        extract_gmsh_topology_and_markers, ufl_mesh_from_gmsh)
from dolfinx import geometry
from dolfinx.mesh import create_mesh, meshtags_from_entities
import ufl
from ufl import SpatialCoordinate, TestFunction, TrialFunction, dot, ds, dx, grad
from ufl import (FacetNormal, FiniteElement, Identity, Measure, TestFunction, TrialFunction, VectorElement,
                 as_vector, div, dot, ds, dx, inner, lhs, grad, nabla_grad, rhs, sym)
import numpy as np
import matplotlib.pyplot as plt
import tqdm.notebook
from mpi4py import MPI
from petsc4py import PETSc
import scipy.constants as c


#Domain-Definieren:

L =24.
H =18.
c_x1 = 8. 
c_y1 = 13.
r1 = 0.01
c_x2 = 16. 
c_y2 = 13.
r2 = 0.001
gdim = 2
rank = MPI.COMM_WORLD.rank

if rank == 0:
    rectangle = gmsh.model.occ.addRectangle(0,0,0, L, H, tag=1)
    obstacle1 = gmsh.model.occ.addDisk(c_x1, c_y1, 0, r1, r1)
    obstacle2 = gmsh.model.occ.addDisk(c_x2, c_y2, 0, r2, r2)

if rank == 0:
    Mesh_domain = gmsh.model.occ.cut([(gdim, rectangle)], [(gdim, obstacle1), (gdim, obstacle2)])
    gmsh.model.occ.synchronize()

#Verbinden aller Mesh-Punkte
Mesh_domain_marker = 1

if rank == 0:
    volumes = gmsh.model.getEntities(dim=gdim)
    gmsh.model.addPhysicalGroup(volumes[0][0], [volumes[0][1]], Mesh_domain_marker)
    gmsh.model.setPhysicalName(volumes[0][0], Mesh_domain_marker, "Mesh_domain")

inlet_marker, outlet_marker, wall_marker, obstacle1_marker,obstacle2_marker, wall_top = 2, 3, 4, 5, 6, 7
inflow, outflow, walls, obstacle1, obstacle2 , top = [], [], [], [], [], []

if rank == 0:
    boundaries = gmsh.model.getBoundary(volumes, oriented=False)
    for boundary in boundaries:
        center_of_mass = gmsh.model.occ.getCenterOfMass(boundary[0], boundary[1])
        if np.allclose(center_of_mass, [0, H/2, 0]):
            inflow.append(boundary[1])
        elif np.allclose(center_of_mass, [L, H/2, 0]):
            outflow.append(boundary[1])
        elif  np.allclose(center_of_mass, [L/2, 0, 0]):
            walls.append(boundary[1])
        elif np.allclose(center_of_mass, [L/2, H, 0]):
            top.append(boundary[1])
        elif np.allclose(center_of_mass, [c_x1, c_y1, 0]):
            obstacle1.append(boundary[1])
        elif np.allclose(center_of_mass, [c_x2, c_y2, 0]):
            obstacle2.append(boundary[1])
            
    gmsh.model.addPhysicalGroup(1, walls, wall_marker)
    gmsh.model.setPhysicalName(1, wall_marker, "Walls")
    gmsh.model.addPhysicalGroup(1, inflow, inlet_marker)
    gmsh.model.setPhysicalName(1, inlet_marker, "Inlet")
    gmsh.model.addPhysicalGroup(1, outflow, outlet_marker)
    gmsh.model.setPhysicalName(1, outlet_marker, "Outlet")
    gmsh.model.addPhysicalGroup(1, obstacle1, obstacle1_marker)
    gmsh.model.setPhysicalName(1, obstacle1_marker, "Obstacle1")
    gmsh.model.addPhysicalGroup(1, obstacle2, obstacle2_marker)
    gmsh.model.setPhysicalName(1, obstacle2_marker, "Obstacle2")
    gmsh.model.addPhysicalGroup(1, top, wall_top)
    gmsh.model.setPhysicalName(1, wall_top, "top")

if rank == 0:
    gmsh.option.setNumber('Mesh.MeshSizeMin', 2e-1)
    gmsh.option.setNumber('Mesh.MeshSizeMax', 2e-1)
    gmsh.option.setNumber("Mesh.RecombinationAlgorithm", 8)
    gmsh.option.setNumber("Mesh.RecombineAll", 2)
    gmsh.option.setNumber("Mesh.SubdivisionAlgorithm", 1)
    gmsh.model.mesh.generate(gdim)
    gmsh.model.mesh.optimize("Netgen") 

if MPI.COMM_WORLD.rank == 0:

    # Mesh Geometrie   
    x = extract_gmsh_geometry(gmsh.model)

    # Topologie für jedes Element vom Mesh
    topologies = extract_gmsh_topology_and_markers(gmsh.model)
    num_cell_types = len(topologies.keys())
    cell_information = {}
    cell_dimensions = np.zeros(num_cell_types, dtype=np.int32)
    
    for i, element in enumerate(topologies.keys()):
        properties = gmsh.model.mesh.getElementProperties(element)
        name, dim, order, num_nodes, local_coords, _ = properties
        cell_information[i] = {"id": element, "dim": dim, "num_nodes": num_nodes}
        cell_dimensions[i] = dim

    # Sort elements by ascending dimension

    perm_sort = np.argsort(cell_dimensions)

    # Broadcast cell type data and geometric dimension
    
    cell_id = cell_information[perm_sort[-1]]["id"]
    tdim = cell_information[perm_sort[-1]]["dim"]
    num_nodes = cell_information[perm_sort[-1]]["num_nodes"]
    cell_id, num_nodes = MPI.COMM_WORLD.bcast([cell_id, num_nodes], root=0)

    if tdim - 1 in cell_dimensions:
        num_facet_nodes = MPI.COMM_WORLD.bcast( cell_information[perm_sort[-2]]["num_nodes"], root=0)
        gmsh_facet_id = cell_information[perm_sort[-2]]["id"]
        marked_facets = np.asarray(topologies[gmsh_facet_id]["topology"], dtype=np.int64)
        facet_values = np.asarray(topologies[gmsh_facet_id]["cell_data"], dtype=np.int32)

    cells = np.asarray(topologies[cell_id]["topology"], dtype=np.int64)
    cell_values = np.asarray(topologies[cell_id]["cell_data"], dtype=np.int32)

else:
    cell_id, num_nodes = MPI.COMM_WORLD.bcast([None, None], root=0)
    cells, x = np.empty([0, num_nodes], np.int64), np.empty([0, gdim])
    cell_values = np.empty((0,), dtype=np.int32)
    num_facet_nodes = MPI.COMM_WORLD.bcast(None, root=0)
    marked_facets = np.empty((0, num_facet_nodes), dtype=np.int64)
    facet_values = np.empty((0,), dtype=np.int32)

    
# Create distributed mesh

ufl_domain = ufl_mesh_from_gmsh(cell_id, gdim)
gmsh_cell_perm = cell_perm_gmsh(to_type(str(ufl_domain.ufl_cell())), num_nodes)
cells = cells[:, gmsh_cell_perm]
mesh = create_mesh(MPI.COMM_WORLD, cells, x[:, :gdim], ufl_domain)
tdim = mesh.topology.dim
fdim = tdim - 1

# Permute facets from MSH to DOLFINx ordering

facet_type = cell_entity_type(to_type(str(ufl_domain.ufl_cell())), fdim, 0)
gmsh_facet_perm = cell_perm_gmsh(facet_type, num_facet_nodes)
marked_facets = np.asarray(marked_facets[:, gmsh_facet_perm], dtype=np.int64)

local_entities, local_values = distribute_entity_data(mesh, fdim, marked_facets, facet_values)
mesh.topology.create_connectivity(fdim, tdim)
adj = create_adjacencylist(local_entities)
bb_tree = geometry.BoundingBoxTree(mesh, mesh.topology.dim)

# Create DOLFINx MeshTags

ft = meshtags_from_entities(mesh, fdim, adj, np.int32(local_values))
ft.name = "Facet tags"


#Funktionspace und Vektorfunktionspace defenieren
s_cg1 = FiniteElement("CG", mesh.ufl_cell(), 1)
V = FunctionSpace(mesh, s_cg1)
V_E= fem.VectorFunctionSpace(mesh, ("DG", 0))
fdim = mesh.topology.dim - 1

E_cp = -16.5e5
E_cn = 16.5e5

#Boundary conditions definieren
# Walls
u1_nonslip = np.array((0,) *mesh.geometry.dim, dtype=PETSc.ScalarType)
u11_nonslip = np.array((0,) *mesh.geometry.dim, dtype=PETSc.ScalarType)
wall_facets = ft.indices[ft.values == wall_marker]
bc_walls = dirichletbc(PETSc.ScalarType(0), locate_dofs_topological(V, fdim, wall_facets), V)

#Boundary conditions for equations: 
bcwall = [bc_walls] 

#Laplace
u1 = ufl.TrialFunction(V) 
v1 = ufl.TestFunction(V)
dObt = Measure("ds", domain=mesh, subdomain_data=ft, subdomain_id=obstacle1_marker)
dObs = Measure("ds", domain=mesh, subdomain_data=ft, subdomain_id=obstacle2_marker)
a = ufl.inner(ufl.grad(u1), ufl.grad(v1)) * ufl.dx 
x = SpatialCoordinate(mesh)
L =  ufl.inner(E_cp, v1) * dObs + ufl.inner(E_cn,v1) * dObt 
problem1 = fem.petsc.LinearProblem(a, L, bcwall, petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
phi = problem1.solve()

print("phi_max: ", np.max(phi.x.array), " / phi_min: ", np.min(phi.x.array))
print(phi.x.array)

with io.VTKFile(mesh.comm, "Laplace.pvd", "w") as vtk:
    vtk.write([phi._cpp_object])

with io.XDMFFile(mesh.comm, "Laplace.xdmf", "w") as xdmf:
    xdmf.write_mesh(mesh)
    xdmf.write_function(phi)

Start by making sure that the facet markers are correct by visualizing ft in Paraview.
then assemble simple forms such as dolfinx.fem.assemble_scalar(dolfinx.fem.form(1*dObt)) and dolfinx.fem.assemble_scalar(dolfinx.fem.form(1*dObs)) and check that they give reasonable results

How do I visualize ft in ParaView?

Is that what you mean?

u1 = ufl.TrialFunction(V) 
v1 = ufl.TestFunction(V)
k = Constant(mesh, PETSc.ScalarType(0))
f = k/c.epsilon_0
dObt = Measure("ds", domain=mesh, subdomain_data=ft, subdomain_id=obstacle1_marker)
dObs = Measure("ds", domain=mesh, subdomain_data=ft, subdomain_id=obstacle2_marker)
fem.assemble_scalar(fem.form(1*dObt))
fem.assemble_scalar(fem.form(1*dObs))
a = ufl.inner(ufl.grad(u1), ufl.grad(v1)) * ufl.dx 
x = SpatialCoordinate(mesh)
L =  ufl.inner(E_cp, v1) * dObs + ufl.inner(E_cn,v1) * dObt 
u1 = fem.Function(V)
problem1 = fem.petsc.LinearProblem(a, L, bcwall, petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
phi = problem1.solve()

ft can be written to an XDMFFile as shown in dolfinx/demo_gmsh.py at 2be366d20632377e0688df585fcd7e201d5dc86c · FEniCS/dolfinx · GitHub

I have checked the ft and it seems to be ok.

Do you have any idea why it still doesn’t work?

I do not have time to parse though a code of over 200 lines to find a potential typo. I would suggest starting with one of the tutorials, which as verification checks:
https://jorgensd.github.io/dolfinx-tutorial/chapter3/robin_neumann_dirichlet.html
and do incremental adjustments to the code to get to your problem.

1 Like

I have changed the geometry of the 2d space and now it works with the 2 Neumann boundary conditions.

I just do not know how.

Thank you for the good support!