Selecting boundary facets to apply traction boundary condition

Hi,

I am trying to select the right facets (on an r=0.25 circle on top of a cube). To do this I am using locate_entities_boundary() and meshtags():

T = fem.Constant(domain, default_scalar_type((0.0, 0.0, -1.0)))
f = fem.Constant(domain, default_scalar_type((0.0, 0.0,  0.0)))

traction_facets = mesh.locate_entities_boundary(domain, 1, lambda x : np.sqrt((x[0]-grasp_node[0])**2 + (x[1]-grasp_node[1])**2 + (x[2]-grasp_node[2])**2) < force_radius)
mt = mesh.meshtags(domain, domain.geometry.dim-1, traction_facets, 1)

ds = ufl.Measure("ds", subdomain_data=mt)

        
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
a = ufl.inner(sigma(u), epsilon(v)) * ufl.dx

L = ufl.dot(T, v) * ufl.dx + ufl.dot(T, v) * ds(1)

When plotting in ParaView it seems the traction is being applied possibly as a body force but not as a surface traction on top of the cube. Is there anything wrong with the code? A minimal example code is shown below:

from petsc4py import PETSc
from mpi4py import MPI
import ufl
from dolfinx import mesh, fem, default_scalar_type, io
from dolfinx.fem.petsc import assemble_matrix, assemble_vector, apply_lifting, set_bc #,create_vector
import basix

import numpy as np


def distToCenter(tri_vertex, ctr):
    return np.sqrt((tri_vertex[0]-ctr[0])**2 + (tri_vertex[1]-ctr[1])**2 + (tri_vertex[2]-ctr[2])**2)


# Import nodes and connectivity matrix into Fenics domain and mesh objects
points = np.array([[0.0, 0.0, 0.0],
                   [0.0, 1.0, 0.0],
                   [0.0, 1.0, 1.0],
                   [0.0, 0.0, 1.0],
                   [1.0, 0.0, 0.0],
                   [1.0, 1.0, 0.0],
                   [1.0, 1.0, 1.0],
                   [1.0, 0.0, 1.0]])
cells  = np.array([[0, 1, 3, 4],
                   [7, 3, 4 ,6],
                   [1, 2, 3, 6],
                   [3, 1, 6, 4],
                   [5, 1, 6, 4]])

finiteElement = basix.ufl.element("Lagrange", "tetrahedron", 1, shape=(3, ))

domain = mesh.create_mesh(MPI.COMM_WORLD, cells, points, finiteElement)

fdim = domain.topology.dim - 1


for n in np.arange(4):
    domain.topology.create_entities(1)
    domain = mesh.refine(domain)
    domain.topology.create_connectivity(fdim, fdim+1)


# Variables
fix_radius   = 0.25

force_radius = 0.25


E  = 3.5e9
nu = 0.35
lambda_ = E * nu / ((1.0 + nu) * (1 - 2.0*nu))
mu      = 0.5 * E / (1.0 + nu)


# FEA functions
def epsilon(u):
    return ufl.sym(ufl.grad(u)) # Equivalent to 0.5*(ufl.nabla_grad(u) + ufl.nabla_grad(u).T)

def sigma(u):
    return lambda_ * ufl.nabla_div(u) * ufl.Identity(len(u)) + 2 * mu * epsilon(u)

  
# Calculate grasp node
grasp_node       = np.array([0.5, 0.5, 1.0])
   
grasp_facet_node = np.array([0.5, 0.5, 0.0])
    
       
# Get facets that are within sphere with center at grasp_facet_node
free_end_facets        = mesh.exterior_facet_indices(domain.topology)
free_end_connectivity2 = mesh.entities_to_geometry(domain, fdim, free_end_facets)


fixed_facets = np.empty((0), dtype=int)
for p in range(free_end_connectivity2.shape[0]):
            
    dist1 = distToCenter(domain.geometry.x[free_end_connectivity2[p,0],:].squeeze(), grasp_facet_node)
    dist2 = distToCenter(domain.geometry.x[free_end_connectivity2[p,1],:].squeeze(), grasp_facet_node)
    dist3 = distToCenter(domain.geometry.x[free_end_connectivity2[p,2],:].squeeze(), grasp_facet_node)
            
    if (dist1 < fix_radius) and (dist2 < fix_radius) and (dist3 < fix_radius):
        fixed_facets = np.append(fixed_facets, p)
        
        
        
## FEA SETUP DEPENDING ON DOMAIN2
V = fem.functionspace(domain, ("Lagrange", 1, (domain.geometry.dim, )))

u_D = np.array([0, 0, 0], dtype=default_scalar_type)

T = fem.Constant(domain, default_scalar_type((0.0, 0.0, -1.0)))
f = fem.Constant(domain, default_scalar_type((0.0, 0.0,  0.0)))


traction_facets = mesh.locate_entities_boundary(domain, 1, lambda x : np.sqrt((x[0]-grasp_node[0])**2 + (x[1]-grasp_node[1])**2 + (x[2]-grasp_node[2])**2) < force_radius)
mt = mesh.meshtags(domain, domain.geometry.dim-1, traction_facets, 1)

ds = ufl.Measure("ds", subdomain_data=mt)

        
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
a = ufl.inner(sigma(u), epsilon(v)) * ufl.dx

L = ufl.dot(T, v) * ufl.dx + ufl.dot(T, v) * ds(1)


## Solution setup

a_compiled = fem.form(a)
L_compiled = fem.form(L)

# Create solution function
uh = fem.Function(V)

# Solver
solver = PETSc.KSP().create(domain.comm)
solver.setType(PETSc.KSP.Type.PREONLY)
solver.getPC().setType(PETSc.PC.Type.LU)
        
      
        
## SOLVE FEA
bc = fem.dirichletbc(u_D, fem.locate_dofs_topological(V, fdim, free_end_facets[fixed_facets]), V)
        
# Assemble system, applying boundary conditions
A = assemble_matrix(a_compiled, bcs=[bc])
A.assemble()
        
b = assemble_vector(L_compiled)
apply_lifting(b, [a_compiled], bcs=[[bc]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
set_bc(b, [bc])
        
       
# Solver
solver.setOperators(A)
        
# Compute solution
solver.solve(b, uh.x.petsc_vec)
        
            
with io.XDMFFile(domain.comm, "deformation" + str(0) + ".xdmf", "w") as xdmf:
    xdmf.write_mesh(domain)
    uh.name = "Deformation"
    xdmf.write_function(uh)

This is quite easy to debug if you add:

traction_facets = mesh.locate_entities_boundary(domain, 1, lambda x : np.sqrt((x[0]-grasp_node[0])**2 + (x[1]-grasp_node[1])**2 + (x[2]-grasp_node[2])**2) < force_radius)
mt = mesh.meshtags(domain, domain.geometry.dim-1, traction_facets, 1)
import dolfinx
with dolfinx.io.XDMFFile(MPI.COMM_WORLD, "facet_marker.xdmf", "w") as xdmf:
    xdmf.write_mesh(domain)
    xdmf.write_meshtags(mt, domain.geometry)

and look at the marked facets in Paraview. Then you get:


Then, looking at your code, you want to find the facets, the dimension in

is wrong. It shouldn’t be 1, but domain.topology.dim-1, which is 2 in the case of a 3D geometry with tetrahedrons.
Changing this, you get:

That works thank you!