Dear community,
due to code robustness I would like to use the same class
for the initial values and my Manufactured Solution.
For this example case, I used the ft_03_heat.py example of the tutorial. The Manufactured Solution is implemented as following:
u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t',
degree=2, alpha=alpha, beta=beta, t=0)
To my surprise, the following implementation as a class
doesn’t yield the same results
class U_D(UserExpression):
def __init__(self, t, alpha, beta, **kwargs):
super().__init__(**kwargs)
self.t = t
self.alpha = alpha
self.beta = beta
def update(self, t):
self.t = t
def eval(self, value, x):
u_e = 1.0 + x[0]*x[0] + self.alpha*x[1]*x[1] + self.beta*self.t
value = u_e
like the execution of the hidden MWCE shows.
MWCE
"""
FEniCS tutorial demo program: Heat equation with Dirichlet conditions.
Test problem is chosen to give an exact solution at all nodes of the mesh.
u'= Laplace(u) + f in the unit square
u = u_D on the boundary
u = u_0 at t = 0
u = 1 + x^2 + alpha*y^2 + \beta*t
f = beta - 2 - 2*alpha
"""
from fenics import *
import numpy as np
t = 0
T = 2.0 # final time
num_steps = 10 # number of time steps
dt = T / num_steps # time step size
alpha = 3 # parameter alpha
beta = 1.2 # parameter beta
# Create mesh and define function space
nx = ny = 8
mesh = UnitSquareMesh(nx, ny)
V = FunctionSpace(mesh, 'P', 1)
# Define boundary condition
class U_D(UserExpression):
def __init__(self, t, alpha, beta, **kwargs):
super().__init__(**kwargs)
self.t = t
self.alpha = alpha
self.beta = beta
def update(self, t):
self.t = t
def eval(self, value, x):
u_e = 1.0 + x[0]*x[0] + self.alpha*x[1]*x[1] + self.beta*self.t
value = u_e
u_D = U_D(t, alpha, beta, degree = 2)
"""
u_D = Expression('1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t',
degree=2, alpha=alpha, beta=beta, t=0)
"""
def boundary(x, on_boundary):
return on_boundary
bc = DirichletBC(V, u_D, boundary)
# Define initial value
u_n = interpolate(u_D, V)
# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(beta - 2 - 2*alpha)
F = u*v*dx + dt*dot(grad(u), grad(v))*dx - (u_n + dt*f)*v*dx
a, L = lhs(F), rhs(F)
# Time-stepping
u = Function(V)
for n in range(num_steps):
# Update current time
t += dt
u_D.update(t)
#u_D.t = t
# Compute solution
solve(a == L, u, bc)
# Plot solution
plot(u)
# Compute error at vertices
u_e = interpolate(u_D, V)
L2_error = errornorm(u_e, u, 'L2', degree_rise=3)
vertex_values_u = u.compute_vertex_values(mesh)
u_avg = np.average(vertex_values_u)
print('t = %.2f: u_avg = %.5f, error = %.3g' % (t, u_avg, L2_error))
# Update previous solution
u_n.assign(u)
How do I have to adjust the class
to yield the same results as the Expression
?
Thanks!