Nested Newton solver for mpc

Dear all,

I am trying to solve a non linear problem with periodic bcs and a Langrange multiplier using ufl.MixedFunctionSpace.

For that, I am trying to adapt the BlockedNewtonSolver from scifem to include a list of mpc from dolfinx_mpc using dolfinx_mpc.assemble_matrix_nest and dolfinx_mpc.create_matrix_nest.

I am still learning and debugging my code, but i run into an error before the very first iteration, when assemble the first residual:

[0]PETSC ERROR: ------------------------------------------------------------------------
[0]PETSC ERROR: Caught signal number 11 SEGV: Segmentation Violation, probably memory access out of range
[0]PETSC ERROR: Try option -start_in_debugger or -on_error_attach_debugger
[0]PETSC ERROR: or see https://petsc.org/release/faq/#valgrind and https://petsc.org/release/faq/
[0]PETSC ERROR: configure using --with-debugging=yes, recompile, link, and run 
[0]PETSC ERROR: to get more information on the crash.
[0]PETSC ERROR: Run with -malloc_debug to check if memory corruption is causing the crash.
Abort(59) on node 0 (rank 0 in comm 0): application called MPI_Abort(MPI_COMM_WORLD, 59) - process 0

Here is my draft code



from __future__ import annotations

import logging
from packaging.version import parse as _v

from petsc4py import PETSc
import ufl
import dolfinx
import dolfinx_mpc

logger = logging.getLogger(__name__)
import numpy     as np

#Original code avaiable at https://github.com/scientificcomputing/scifem/blob/main/src/scifem/solvers.py


def cast_seq_to_nest(dx: PETSc.Vec, x: PETSc.Vec) -> PETSc.Vec:
    """
    Cast a sequential Vec (dx) into a VecNest using the structure of x.

    Parameters:
        dx (PETSc.Vec): Sequential vector to be converted.
        x (PETSc.Vec): Nest vector providing the structure.

    Returns:
        PETSc.Vec: A new VecNest constructed from dx.
    """
    if x.getType() != 'nest':
        raise ValueError("x must be a VecNest type.")
    
    # Extract sub-vector sizes from x
    sub_vecs_x = x.getNestSubVecs()
    sizes = [sub_vec.getSize() for sub_vec in sub_vecs_x]

    # Validate total size of dx
    if dx.getSize() != sum(sizes):
        raise ValueError("The size of dx does not match the total size of x's sub-vectors.")

    # Split dx into sub-vectors based on sizes
    offsets = np.concatenate(([0], np.cumsum(sizes)[:-1]))  # Calculate the offsets
    sub_vecs_dx = []
    for offset, size in zip(offsets, sizes):
        sub_vec = PETSc.Vec().createSeq(size)
        sub_vec.array = dx.array[offset : offset + size]
        sub_vecs_dx.append(sub_vec)

    # Create a new VecNest
    dx_nest = PETSc.Vec().createNest(sub_vecs_dx)
    dx_nest.assemble()

    return dx_nest


class BlockedNewtonSolverMPC(dolfinx.cpp.nls.petsc.NewtonSolver):
    def __init__(
        self,
        F: list[ufl.form.Form],
        u: list[dolfinx.fem.Function],
        mpc: list[dolfinx_mpc.MultiPointConstraint],
        bcs: list[dolfinx.fem.DirichletBC] = [],
        J: list[list[ufl.form.Form]] | None = None,
    ):
        # Initialize base class
        super().__init__(u[0].function_space.mesh.comm)
        self._F = dolfinx.fem.form(F)

        # Create the Jacobian matrix, dF/du
        if J is None:
            du = ufl.TrialFunctions(ufl.MixedFunctionSpace(*[ui.function_space for ui in u]))
            J = ufl.extract_blocks(sum(ufl.derivative(sum(F), u[i], du[i]) for i in range(len(u))))
        
        self.jacobian = J
        self._a = dolfinx.fem.form(J)

        self.mpc = mpc
        self.u_mpc = [dolfinx.fem.Function(m.function_space) for m in self.mpc]
        self._bcs = bcs
        self._u = u

        self._b = dolfinx_mpc.create_vector_nest(self._F, mpc)
        self._J = dolfinx_mpc.create_matrix_nest(self._a, mpc)
        self._dx = dolfinx.fem.petsc.create_vector_nest(self._F)
        self._x = dolfinx.fem.petsc.create_vector_nest(self._F)

        self.setF(self._assemble_residual, self._b)
        self.setJ(self._assemble_jacobian, self._J)
        self.set_update(self._update_function)
        print(type(self._a))
        print("Everything set in solver ")


    @property
    def L(self) -> list[dolfinx.fem.Form]:
        """Compiled linear form (the residual form)"""
        return self._F

    @property
    def a(self) -> list[list[dolfinx.fem.Form]]:
        """Compiled bilinear form (the Jacobian form)"""
        return self._a

    @property
    def u(self):
        return self._u

    def __del__(self):
        self._A.destroy()
        self._b.destroy()
        self._dx.destroy()
        self._x.destroy()

    def _assemble_residual(self, x: PETSc.Vec, b: PETSc.Vec) -> None:
        """Assemble the residual F into the vector b.
        Args:
            x: The vector containing the latest solution
            b: Vector to assemble the residual into
        """

        print("Assembling residual", b.getArray(),x.getArray())
        dolfinx_mpc.assemble_vector_nest(b, self._F, self.mpc)
        
        b_local.array[:] = 0.0
        print("Setting done ")
        with b.localForm() as b_local:
            b_local.set(0.0)

        # x0 = [] if x is None else x.getNestSubVecs()
        # bcs1 = dolfinx.fem.bcs_by_block(dolfinx.fem.extract_function_spaces(self._F), self._bcs)

        for i,(b_sub,x_sub)  in enumerate(zip(b.getNestSubVecs(),x.getNestSubVecs())):
            suba=self._J    
            print(x_sub.getSize(),self._J.getSize())
            print("self.jacobian[j][i] ")
            dolfinx_mpc.apply_lifting(
            b_sub,
            # self.jacobian,
            [self.jacobian[j][i] for j in range(2)],
            bcs=[],
            constraint=self.mpc[i],
            x0=[x_sub],
            scale=dolfinx.default_scalar_type(-1.0),
        )
            b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)

        bcs0 = dolfinx.fem.bcs_by_block(dolfinx.fem.extract_function_spaces(self._F), self._bcs)
        dolfinx.fem.petsc.set_bc_nest(b, bcs0)



    def _assemble_jacobian(self, x: PETSc.Vec, A: PETSc.Mat) -> None:
        print("ASSEMBLING Jacobian attempt")

        """Assemble the Jacobian matrix.
        Args:
            x: The vector containing the latest solution
        """
        A.zeroEntries()
        dolfinx_mpc.assemble_matrix_nest(A, self._a, self.mpc, self._bcs)
        A.assemble()
        # print(A.getArray())
        print("ASSEMBLING Jacobian done")

    def _update_function(self, solver, dx: PETSc.Vec, x: PETSc.Vec):
        """
        Update and add MPC TODO
        """
        print("Updating...")
        newdx = cast_seq_to_nest(dx,x)
        for i,(subdx,subx) in enumerate(zip(newdx.getNestSubVecs(),x.getNestSubVecs())):
            self.u_mpc[i].x.petsc_vec.array = subx.array_r
            self.u_mpc[i].x.petsc_vec.axpy(-1.0, subdx)
            self.u_mpc[i].x.petsc_vec.ghostUpdate(
                addv=PETSc.InsertMode.INSERT,  # type: ignore
                mode=PETSc.ScatterMode.FORWARD,  # type: ignore
            )  # type: ignore
            self.mpc[i].homogenize(self.u_mpc[i])
            self.mpc[i].backsubstitution(self.u_mpc[i])
            subx.array = self.u_mpc[i].x.petsc_vec.array_r
            subx.ghostUpdate(
                addv=PETSc.InsertMode.INSERT,  # type: ignore
                mode=PETSc.ScatterMode.FORWARD,  # type: ignore
        )
        print("Updating Done")
            
    def solve(self):
        print("Starting solver")
        """Solve non-linear problem into function. Returns the number
        of iterations and if the solver converged."""
        # dolfinx.log.set_log_level(dolfinx.log.LogLevel.INFO)
        print("SOlving with ", self._x,self._x.getArray())

        print("Starting solver")
        print("\n")
        n, converged = super().solve(self._x)
        self._x.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
        return n, converged

Thank you very much for your help

Hello AymaneGr

I am also interested in combining these two aspects (nested Newton solver and MPC solver).

Could you please provide an example in which your attempt for the nested Newton solver for mpc is used?

I think this would help in the debugging.

Best regards
Martin

Hi Martin,

I have managed to run a solver combining both these elements, it is working but seems to be a slower than using a classical solver. I will organize the code and share it with you.

Regards,

Aymane