hello, i am new to the fenics project, and recently i have met a problem and i could not solve it.
Here’s what i want to do. I would like my code to solve the p whose value would go from 0 to 1 and it would not decrease while it attain the threshold value.
Here’s part of the code:
V = FunctionSpace(mesh, 'CG', 1)
W = VectorFunctionSpace(mesh, 'CG', 1)
WW = FunctionSpace(mesh, 'DG', 0)
p, q = TrialFunction(V), TestFunction(V)
u, v = TrialFunction(W), TestFunction(W)
unew, uold = Function(W), Function(W)
pnew, pold, Hold = Function(V), Function(V), Function(V)
E_du = ((1.0-pold)**2)*inner(grad(v),sigma(u))*dx
E_phi = (Gc*l*inner(grad(p),grad(q))+((Gc/l)+2.0*H(uold,unew,Hold))\
*inner(p,q)-2.0*H(uold,unew,Hold)*q)*dx
p_disp = LinearVariationalProblem(lhs(E_du), rhs(E_du), unew, bc_u)
p_phi = LinearVariationalProblem(lhs(E_phi), rhs(E_phi), pnew, bc_phi)
solver_disp = LinearVariationalSolver(p_disp)
solver_phi = LinearVariationalSolver(p_phi)
while t<=1.0:
t += deltaT
load.t=t*u_r
iter = 0
err = 1
while err > tol:
iter += 1
solver_disp.solve()
solver_phi.solve()
err_u = errornorm(unew,uold,norm_type = 'l2',mesh = None)
err_phi = errornorm(pnew,pold,norm_type = 'l2',mesh = None)
err = max(err_u,err_phi)
uold.assign(unew)
pold.assign(pnew)
Hold.assign(project(psi(unew), WW))
unfortunately, in some cases, while the p value attain 1 it would still decrease back to 0, and that’s exactly what i don’t want. So i want to ask is there any method to control the value so that once the pnew reach like 0.8 and then it won’t decrease anymore, or the pnew less than pold at some points, and at these points, we take the values of pold.